## MATH 3B3 (Fall 2016)

## Assignment 1

Due Date: Before 12:30 pm, September 23, 2016

1. Let $\gamma(t):[a, b] \longrightarrow \mathbb{R}^{3}$ be a $C^{1}$ curve. Show that its arclength is independent of reparametrization. [Hint: Use the fact explained in class that a reparametrization is either monotonically increasing or decreasing. In each case use the formula for integration by substitution.]
2. For the curve $\mathbf{c}(t)=\left(e^{t} \cos t, e^{t} \sin t, e^{t}\right)$ with $t>0$, find its reparametrization by arclength.
3. Verify that the curve $\mathbf{c}(s)=\frac{1}{\sqrt{5}}\left(\sqrt{1+s^{2}}, 2 s, \log \left(s+\sqrt{1+s^{2}}\right)\right)$ has a unit speed parametrization. Then compute its curvature and torsion. In this course, log always refers to the logarithm base $e$.
4. A regular curve $\mathbf{c}(t)$ has the property that there is a vector $\mathbf{a} \in \mathbb{R}^{3}$ such that $\mathbf{c}(t)-\mathbf{a}$ is always perpendicular to its tangent vector $\mathbf{c}^{\prime}(t)$. Prove that $\mathbf{c}(t)$ must lie on a sphere.
5. Show that the formula

$$
\phi(u, v)=(u \cos v, u \sin v, u+v)
$$

for $u, v \in \mathbb{R}$ gives a parametrization of a regular smooth surface. Find the equation of the tangent plane and the unit normal vector to the surface at the point $(u, v)=(a, b)$.

