Name:

Instructions: Staple all work to the back of this page.

Problem 1: Create truth tables for the following statements.

a.
$$(p \lor q) \land \sim p$$

b. $\sim (p \wedge q) \lor p$

c. $(p \lor q) \land (q \lor r)$

Problem 2: Show that the following are logically equivalent by means of a truth table:

a. $p \lor (q \lor r) \equiv (p \lor q) \lor r$ (i.e. The Associative Law Holds)

b.
$$\sim (p \land q) \land p \equiv \sim q \land p$$

c. $\sim (p \lor (\sim q \land \sim r)) \equiv \sim p \land (q \lor r)$

Problem 3: Use truth tables to determine which of the following are tautologies and which are contradictions.

- a. $(p \land q) \lor (\sim p \lor (p \land \sim q))$
- b. $(p \land \sim q) \land (\sim p \lor q)$
- c. $((\sim p \land q) \land (q \land r)) \land \sim q$
- d. $(\sim p \lor q) \lor (p \land \sim q)$

Problem 4: (The Definition of Exclusive-Or) Let $p \oplus q$ be shorthand for the statement $(p \lor q) \land \sim (p \land q)$. a. By writing a truth table for $(p \lor q) \land \sim (p \land q)$ verify that:

p	q	$p\oplus q$
T	T	F
T	F	Т
F	T	Т
F	F	F

You may view the truth table above as the definition of $p \oplus q$; this is the notion of "exclusive-or": p or q is true but not both. It may be easier to think of $p \oplus q$ as being true when exactly one of p or q is true. Answer the following questions about the algebraic structure of exclusive-or.

- b. Is $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$? (i.e. Is \oplus associative?) Justify by a truth table if it is true, or find specific truth values for p, q, and r which would show that they aren't equivalent.
- c. Is $(p \oplus q) \wedge r \equiv (p \wedge r) \oplus (q \wedge r)$? (i.e. Does \wedge distribute over \oplus ?) Justify by a truth table if it is true, or find specific truth values for p, q and r which would show that they aren't equivalent.