

1. Given: A is an open subset of R^d , $A \cap \bar{B} \neq \emptyset$. Show: $A \cap B \neq \emptyset$.

2. Given: U is an open subset of R^d

a) Show: $U \subseteq (\bar{U})^\circ$

b) Can we have $U \neq (\bar{U})^\circ$?

3. Given: A is a subset of R^d . Show: $A' = (\bar{A})'$ (A' = set of all limit points of A)

4. For $A \subseteq R^d$, diameter of A, $\text{diam}(A) = \sup \{ \|x - y\| : x, y \in A\}$

a) Show that $\text{diam}(A) < \infty$ if and only if, A is bounded.

b) Show that if A is compact then there exist $x_0, y_0 \in A$ such that $\text{diam}(A) = \|x_0 - y_0\|$

5. Given a sequence $\{X_n\}$ in R^d , $x \in R^d$, consider the statements

a) given any nbd (=neighborhood) U of x, $\{n : X_n \in U\}$ is infinite.

b) given any nbd U of x, $\{X_n\}$ is frequently in U (for every $n \in N$, there exists $k > n$, such that $X_k \in U$).

c) there is a subsequence of $\{X_n\}$ that converges to X.

Show: 1): $a \Rightarrow b$

2): $b \Rightarrow c$

3): $c \Rightarrow a$