1.

a) Show that if $a, b \in \mathbb{N}$ have remainders in the set $\{1,4\}$ after division by 5 , then so does their product.
b) Show that there are infinitely many primes which have remainders 2 or 3 when divided by 5 .
Hint: Imitate the proof of Euclid's Theorem by forming a product involving primes (each with remainder 1 or 4) and possibly something else so that when we add, say, 2, we obtain a number N with remainder 2 after division by 5 . Then apply part a).
2. Set F_{n} denote the nth Fermat number $F_{n}=2^{2^{n}}+1$.
a) Show that if $m<n$, then F_{m} divides $F_{n}-2$.
b) Deduce once more that there exist infinitely many primes.

Hint: We have seen in class that $b^{k}+1 \mid b^{2 k}-1$ and that, when $k \mid l$, $b^{k}-1 \mid b^{l}-1$.
3. Implement our Algorithm 5, the Sieve of Eratosthenes, and find all the primes between 1600 and 3600 .
How many pairs of primes differ by 2 ?
4. Prove by a careful induction that if $r \in \mathbb{N}$, then

$$
b^{2^{r}}-1=(b-1)(b+1)\left(b^{2}+1\right)\left(b^{2^{2}}+1\right) \cdots\left(b^{2^{r-1}}+1\right)
$$

You may use either the Well-Ordering Principle or standard Mathematical Induction.
5. Let $a \equiv r \bmod m$ and $b \equiv s \bmod m$. Prove the following:
(a) $a+b \equiv r+s \bmod m$.
(b) $a b \equiv r s \bmod m$.
(c) Generalize the proof of Euclid's Lemma to show that if $\operatorname{gcd}(a, m)=1$ and $a c \equiv 0 \bmod m$, then $c \equiv 0 \bmod m$.
(d) Conclude that if $\operatorname{gcd}(a, m)=1$ and $a b \equiv a c \bmod m$, then $b \equiv c$ $\bmod m$.

