1. Show that two of the following operators are linear and that one is not.

$$
A(f(x))=\frac{\partial f}{\partial x}+3 f(x) \quad B(f(x))=\frac{1}{2} f(x) \frac{\partial f}{\partial x} \quad C(f(x))=\int_{0}^{5}(x-y)^{3} f(y) d y
$$

2. Consider the inner product space consisting of all linear combinations of $\sin (x)$ and $\cos (x)$ with the inner product:

$$
\langle f \mid g\rangle=\int_{0}^{\pi} f^{*}(x) g(x) d x
$$

a) What is the matrix representation of the operator $i \frac{\partial}{\partial x}$ if we take $\sin (x)$ and $\cos (x)$ to be our basis functions?
b) Show that the vectors $|p\rangle=e^{i x}$ and $|q\rangle=e^{-i x}$ are orthogonal in this space.
c) Find the scalar a so that $a|p\rangle$ and $a|q\rangle$ form an orthonormal basis.
d) What is the matrix representation of $i \frac{\partial}{\partial x}$ in this basis?
e) What is special about the basis formed by $a|p\rangle$ and $a|q\rangle$?
3. Using the inner product $\langle f \mid g\rangle=\int_{a}^{b} f^{*}(x) g(x) d x$ in a vector space for which all vectors satisfy $f(a)=f(b)=0$, show that $i \frac{\partial}{\partial x}$ is a Hermitian operator but that $\frac{\partial}{\partial x}$ is not.
4. Consider the vector space of all 20 by 20 complex-valued matrices. Show that one of the following forms involving the matrix trace (Tr) is a valid inner product but that the other is not. Here we use A^{+} to represent the conjugate transpose of the matrix A. (Hint: singular value decompositions are very useful things, and matrix traces and unitary matrices have many interesting properties.)

$$
\langle A \mid B\rangle=\operatorname{Tr}(A B) \quad\langle A \mid B\rangle=\operatorname{Tr}\left(A^{+} B\right)
$$

