MAT 2641: Real Analysis

Note:

- Due Date: By 10:30 AM on Friday 12 August 2016

Question 1:

Let A and B be subsets of the universal set E.
(a) Using set identities (in particular, using only equalities) simplify the following expressions
(i) $A \backslash(A \backslash B)$,
(ii) $(A \cap B) \backslash\left(A \cap B^{c}\right)$.
(b) Prove by double inclusion the set identity $A \cap(A \cup B)=A$.
[2, 2, 3 Marks]

Question 2:

(a) Let \mathbb{P} denote the set of positive numbers, which is assumed to exist. Reformulate the order axioms of \mathbb{R} in terms of \mathbb{P}.
(b) Show that if $1<a$, then $1<a<a^{2}$.
[3, 3 Marks]

Question 3:

(a) Determine according to the values of the real number x when the rational function $f(x)=\frac{x-3}{6 x^{2}-x-2}$ is positive, 0 , or negative.
(b) Sketch the graph of $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto|2 x-1|-|3 x+5|=f(x)$. For the sketch take x between -7 and 2 , clearly indicating the x - and y-intercepts.
(c) Determine and sketch the set of pairs (x, y) in $\mathbb{R} \times \mathbb{R}$ that satisfy $|x y|<5$.
(Hint: One may evaluate $|x y|$ according to the sign of $x y$. This gives rise to four cases. By letting y be a function of x, the four cases correspond to two graphs. Clearly plot these graphs for $-10 \leq x \leq 10$, indicating only the relevant values for x. Then shade the required area and describe it explicitly.)

