DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

MAT 2641: Real Analysis

Assignment 1

Note:

• Due Date: By 10:30 AM on Friday 12 August 2016

Question 1:

Let A and B be subsets of the universal set E.

- (a) Using set identities (in particular, using only equalities) simplify the following expressions
 (i) A \ (A \ B), (ii) (A ∩ B) \ (A ∩ B^c).
- (b) Prove by double inclusion the set identity $A \cap (A \cup B) = A$. [2, 2, 3 Marks]

Question 2:

- (a) Let \mathbb{P} denote the set of positive numbers, which is assumed to exist. Reformulate the order axioms of \mathbb{R} in terms of \mathbb{P} .
- (b) Show that if 1 < a, then $1 < a < a^2$.

[3, 3 Marks]

Question 3:

- (a) Determine according to the values of the real number x when the rational function $f(x) = \frac{x-3}{6x^2 x 2}$ is positive, 0, or negative.
- (b) Sketch the graph of $f: \mathbb{R} \to \mathbb{R}: x \mapsto |2x-1| |3x+5| = f(x)$. For the sketch take x between -7 and 2, clearly indicating the x- and y-intercepts.
- (c) Determine and sketch the set of pairs (x, y) in $\mathbb{R} \times \mathbb{R}$ that satisfy |x y| < 5.

(*Hint:* One may evaluate |x y| according to the sign of x y. This gives rise to four cases. By letting y be a function of x, the four cases correspond to two graphs. Clearly plot these graphs for $-10 \le x \le 10$, indicating only the relevant values for x. Then shade the required area and describe it explicitly.)

[4, 4, 4 Marks]