

Problem Set 15

1. Let $Z_i \subseteq \mathbb{R}^N$, $i = 1, \dots, n$ be a collection of zero measure sets. Show that the union $\bigcup Z_i$ also has zero measure.
2. Let $f : [a, b] \rightarrow \mathbb{R}$ be a bounded, integrable function.
 - (a) Show that the graph of f , $\Gamma(f) := \{(x, f(x)) : x \in [a, b]\} \subseteq \mathbb{R}^2$ has zero content.
 - (b) If f is non-negative, show that $S = \{(x, y) : a \leq x \leq b, 0 \leq y \leq f(x)\}$ is measurable, and $m(S) = \int_a^b f(x)dx$.
3. Show that if $f : \mathbb{R} \rightarrow \mathbb{R}^2$ is a C^1 function, then for any interval $I \subseteq \mathbb{R}$, $f(I)$ has zero Jordan measure.
4. If $S = \{x_1, \dots, x_n\}$ is a finite set consisting of precisely n -elements, show that S has zero Jordan measure.
5. Let $f : [a, b] \rightarrow \mathbb{R}$ be a Riemann integrable function. If $g : [a, b] \rightarrow \mathbb{R}$ is another function and $S = \{x : f(x) \neq g(x)\}$ contains exactly n -points, show that g is also Riemann integrable. [Note: You must prove this from scratch. If you wish to invoke a corollary or result from class, you must first prove it.]