

## MAT401 Polynomial Equations and Fields

### Assignment 5

Due Wednesday August 3 at the beginning of the lecture

Please write your arguments neatly and clearly. Numbers in [ ] indicate how much a question or a part of it is worth. The assignment is out of 50. Throughout, the letters  $F, F', K$  and  $L$  denote fields.

**1. [7]** Determine if each statement is true or false. No explanation is necessary. (But make sure you know exactly why a given statement is true or false.)

We use the following notation: If  $\alpha$  is algebraic over  $F$ , the minimal polynomial of  $\alpha$  over  $F$  is denoted by  $m_{\alpha, F}(x)$ .

- (a) Every subfield of  $\mathbb{C}$  contains  $\mathbb{Q}$ .
- (b) There are no ring homomorphisms  $\mathbb{Q} \rightarrow \mathbb{Z}$ .
- (c) If  $F$  and  $F'$  are finite extensions of  $\mathbb{Q}$  such that  $[F : \mathbb{Q}] = [F' : \mathbb{Q}]$ , then every ring homomorphism  $F \rightarrow F'$  is actually an isomorphism.
- (d) If  $F$  and  $F'$  are finite extensions of  $\mathbb{Q}$  such that  $[F : \mathbb{Q}] = [F' : \mathbb{Q}]$ , then  $F$  and  $F'$  are isomorphic as rings.
- (e) If  $F \subset K$ ,  $\alpha \in K$  is algebraic over  $F$ , and  $f(x) \in F[x]$  is such that  $f(\alpha) = 0$ , then  $m_{\alpha, F}(x) \mid f(x)$ .
- (f) If  $F \subset K$ ,  $\alpha \in K$  is a root of  $f(x) \in F[x]$  of degree  $n \geq 1$ , then  $[F(\alpha) : F] \leq n$ .
- (g) If  $\mathbb{Q} \subset F \subset \mathbb{C}$  and  $F/\mathbb{Q}$  is finite, then there is a polynomial  $f(x) \in \mathbb{Q}[x]$  such that  $F$  is contained in the splitting field of  $f(x)$  over  $\mathbb{Q}$ .
- (h) If  $F \subset K \subset L$ , and  $\alpha \in L$  is algebraic over  $F$ , then  $m_{\alpha, F}(x) \mid m_{\alpha, K}(x)$  in  $K[x]$ .
- (i) If  $F \subset K \subset L$ , and  $\alpha \in L$  is algebraic over  $F$ , then  $m_{\alpha, K}(x) \mid m_{\alpha, F}(x)$  in  $K[x]$ .
- (j) The polynomial  $x^8 + 6x^3 + 9x + 21$  has 8 distinct roots in  $\mathbb{C}$ .
- (k) If  $F \subset K$  and  $\alpha \in K$  is such that  $\alpha^3$  is algebraic over  $F$ , then  $\alpha$  is also algebraic over  $F$ .
- (l) Every algebraic extension is finite.
- (m) If  $F \subset \mathbb{C}$ , then every ring homomorphism  $F \rightarrow \mathbb{C}$  fixes  $\mathbb{Q}$ .
- (n) If  $f(x) \in \mathbb{Q}[x]$  is irreducible over  $\mathbb{Q}$  and has degree  $n$ , and  $\alpha_1, \dots, \alpha_n \in \mathbb{C}$  are the roots of  $f(x)$ , then every ring homomorphism  $\varphi : \mathbb{C} \rightarrow \mathbb{C}$  restricts to an automorphism of  $\mathbb{Q}(\alpha_1, \dots, \alpha_n)$ . (In other words, the statement is claiming that if  $\varphi : \mathbb{C} \rightarrow \mathbb{C}$  is a ring homomorphism, then the association  $z \mapsto \varphi(z)$  defines an isomorphism  $\mathbb{Q}(\alpha_1, \dots, \alpha_n) \rightarrow \mathbb{Q}(\alpha_1, \dots, \alpha_n)$ .)

**2. [6] (a) [2]** Suppose  $K/F$  is a field extension,  $\alpha \in K$  such that  $\alpha^2 \in F$ . Show that  $[F(\alpha) : F]$  is either 1 or 2.

**(b) [4]** Suppose  $\alpha_1, \dots, \alpha_n \in \mathbb{C}$  are such that  $\alpha_i^2 \in \mathbb{Q}$  for each  $i$ . Show that  $\sqrt[5]{2} \notin \mathbb{Q}(\alpha_1, \dots, \alpha_n)$ .

3. [12] Let us give a definition first. We say a finite extension  $K/F$  is *simple* if there is  $\omega \in K$  such that  $K = F(\omega)$ . The goal of this question is to prove the following theorem: If  $F \subset K \subset \mathbb{C}$  and  $K/F$  is finite, then  $K/F$  is simple.

- (a) [1] Argue that to prove the theorem it suffices to prove the following: If  $F \subset \mathbb{C}$  and  $\alpha_1, \dots, \alpha_n \in \mathbb{C}$  are algebraic over  $F$ , then  $F(\alpha_1, \dots, \alpha_n)$  is a simple extension of  $F$ .
- (b) [9] On page 4 of this document, you can find a sketch of a proof of the statement given in Part (a), with several steps and justifications left to you. Fill in the “gaps”. (You don’t have to rewrite the full argument; just complete the gaps. If you decide to rewrite the completed argument, please clearly indicate where you address each gap.)
- (c) [2] Let  $K = \mathbb{Q}(\sqrt{2}, i)$ . Following the method given in the proof of (b), find  $\omega$  such that  $K = \mathbb{Q}(\omega)$ .

4. [6] Suppose  $\varphi : R \rightarrow S$  is a ring isomorphism (i.e. a bijective ring homomorphism).

- (a) [3] Show that  $\varphi^{-1} : S \rightarrow R$  is also a ring isomorphism.
- (b) [3] Show that  $R$  is an integral domain if and only if  $S$  is an integral domain

5. [8] Let  $L$  be the splitting field of  $x^n - 3$  over  $\mathbb{Q}$ . Let  $\zeta_n = e^{2\pi i/n}$  and  $\alpha = \sqrt[n]{3}$ .

- (a) [2] Show that  $L = \mathbb{Q}(\alpha, \zeta_n)$ .
- (b) [3] Suppose for the rest of the question that  $n = p$  is prime. Find  $[L : \mathbb{Q}]$ .
- (c) [3] Show that  $f(x) = 1 + x + x^2 + \dots + x^{p-1}$  is irreducible over  $\mathbb{Q}(\alpha)$ .

6. [11] Let us start with a definition. Given  $F \subset K \subset \mathbb{C}$  with  $K/F$  finite, we say the extension  $K/F$  is *Galois* if it satisfies any (and hence all) of the equivalent conditions of Theorem 5 of the notes. If  $K/F$  is Galois, then we call the group  $\text{Aut}(K/F)$  the *Galois group* of  $K/F$ . It is customary to use the notation  $\text{Gal}(K/F)$  for  $\text{Aut}(K/F)$  in this case. (So  $\text{Gal}(K/F)$  and  $\text{Aut}(K/F)$  are the same thing, except that we use the first notation only if  $K/F$  is a Galois extension.)

Below all fields are subfields of  $\mathbb{C}$ .

- (a) [1] Let  $K$  be a Galois extension of  $F$ . Let  $f(x) \in F[x]$  be an irreducible polynomial which has a root in  $K$ . Is it true that  $K$  contains all (complex) roots of  $f(x)$ ? No explanation necessary.
- (b) [4] Let  $K/F$  be Galois, and that  $f(x) \in F[x]$  be a nonzero polynomial all whose complex roots are in  $K$ . Let  $\alpha_1, \dots, \alpha_n$  be all the distinct roots of  $f(x)$ , and for brevity denote the set  $\{\alpha_1, \dots, \alpha_n\}$  by  $\text{roots}(f(x))$ . Let  $\sigma \in \text{Gal}(K/F)$ . Show that there is a bijection

$$\text{roots}(f(x)) \rightarrow \text{roots}(f(x))$$

given by  $\alpha_i \mapsto \sigma(\alpha_i)$ . (In other words, show that  $\sigma$  permutes the roots of  $f(x)$ .) Denote the bijection above by  $\sigma|_{\text{roots}(f(x))}$ , the *restriction of  $\sigma$  to the set of roots of  $f(x)$* .

- (c) [2] For any nonempty set  $X$ , denote the symmetric group on  $X$  by  $S_X$ . Recall that as a set  $S_X$  is the set of all bijections  $X \rightarrow X$ , and the group operation is composition of functions. Continuing with the notation as in (b), show that

$$(1) \quad \text{Gal}(K/F) \rightarrow S_{\text{roots}(f(x))} \quad \sigma \mapsto \sigma|_{\text{roots}(f(x))}$$

is a group homomorphism. (One may refer to this map as the restriction to the set of roots of  $f(x)$ .)

(d) [2] Now suppose moreover that  $K$  is the splitting field of  $f(x)$  over  $F$ . Show that the map (1) above is injective.

We usually identify  $\text{Gal}(K/F)$  with its image under this injection, and think of an element of the Galois group as a permutation of the roots of  $f(x)$ .

(e) [1] Read the example on page 46 of the notes (done in class on Wednesday July 27). With the notation as in the example, identifying the Galois group  $\text{Gal}(L/\mathbb{Q})$  with a subgroup of  $S_{\{\alpha_1, \alpha_2, \alpha_3\}}$ , is complex conjugation equal to the transposition  $(\alpha_2 \alpha_3)$ ?<sup>†</sup>  
 (f) [1] Argue in regards to the example on page 46 of the notes, show that  $\text{Gal}(L/\mathbb{Q}) \simeq S_3$ .

---

<sup>†</sup>For any finite nonempty set  $X$ , the cycle notation in  $S_X$  is just like the case of  $S_n = S_{\{1, \dots, n\}}$ . Here  $(\alpha_2 \alpha_3)$  refers to the element of  $S_{\{\alpha_1, \alpha_2, \alpha_3\}}$  that sends  $\alpha_2 \mapsto \alpha_3$ ,  $\alpha_3 \mapsto \alpha_2$ , and  $\alpha_1 \mapsto \alpha_1$ .

THEOREM 1. If  $F \subset \mathbb{C}$  and  $\alpha_1, \dots, \alpha_n \in \mathbb{C}$  are algebraic over  $F$ , then  $F(\alpha_1, \dots, \alpha_n)/F$  is a simple extension.

PROOF. First note that the result certainly holds when  $n = 1$ :  $F(\alpha_1)/F$  is finite (as  $\alpha_1$  is algebraic over  $F$ ) and is clearly simple. Thus we need to prove the result for  $n \geq 2$ . We do this by induction on  $n$ . Let us assume the base case ( $n = 2$ ) for the moment.

Gap 1: Carry out the induction. In other words, suppose the result holds for some  $n \geq 2$ , and prove it for  $n + 1$ . (Note that we are assuming the base case for now. You can use it.)

Now we turn our attention to the base case, i.e. when  $n = 2$ . Suppose  $\alpha, \beta \in \mathbb{C}$  are algebraic over  $F$ . Our goal is to show that there is  $\omega$  such that  $F(\alpha, \beta) = F(\omega)$ . Let  $f(x)$  (resp.  $g(x)$ ) be the minimal polynomial of  $\alpha$  (resp.  $\beta$ ) over  $F$ . Let  $k = \deg(f(x))$  and  $l = \deg(g(x))$ . Let  $\alpha_1 = \alpha, \alpha_2, \dots, \alpha_k$  be the roots of  $f(x)$  in  $\mathbb{C}$ , and  $\beta_1 = \beta, \beta_2, \dots, \beta_l$  be the roots of  $g(x)$  in  $\mathbb{C}$ . Let  $c \in F$  be an element that is not equal to any of the numbers

$$\frac{\alpha_i - \alpha}{\beta - \beta_j} \quad (1 \leq i \leq k, 2 \leq j \leq l).$$

Gap 2: How do we know such  $c$  exists?

Set  $\omega = \alpha + c\beta$ . We claim that  $F(\alpha, \beta) = F(\omega)$ .

Gap 3: Is  $F(\omega) \subset F(\alpha, \beta)$ ? Why?

To establish the claim, we need to show that  $F(\alpha, \beta) \subset F(\omega)$ . For this it suffices to show  $\alpha, \beta \in F(\omega)$ . Define  $h(x) := f(\omega - cx)$ .

Gap 4: Is  $h(x) \in (F(\omega))[x]$ ? Why?

Gap 5: Verify that  $\beta$  a root of  $h(x)$ .

Gap 6: Show that none of  $\beta_2, \dots, \beta_l$  can be a root of  $h(x)$ .

Let  $g_1(x)$  be the minimal polynomial of  $\beta$  over  $F(\omega)$ . Note that in particular,  $g_1(x) \in (F(\omega))[x]$ .

Gap 7: Does it follow that  $g_1(x) \mid g(x)$  and  $g_1(x) \mid h(x)$ ? Why?

Gap 8: Argue that  $\beta$  is the only root of  $g_1(x)$  (in  $\mathbb{C}$ ).

Thus  $g_1(x)$  is of the form  $a(x - \beta)^r$  for some  $r \geq 1$  and  $a \in F(\omega)$ . Since  $g_1(x)$  is monic,  $a = 1$ , and  $g_1(x) = (x - \beta)^r$ . Since  $g_1(x)$  is irreducible over  $F(\omega)$ , it cannot have any repeated roots. This  $r = 1$  and  $g_1(x) = x - \beta$ .

Gap 9: Does it follow that  $\beta \in F(\omega)$ ? Why?

Gap 10: Use  $\beta \in F(\omega)$  and  $\omega = \alpha + c\beta$  to conclude that  $\alpha \in F(\omega)$  as well. This completes the proof of the theorem. □

**Practice Problems.** The following problems are for your own practice. Please **do not** hand them in. Throughout  $F$  and  $K$  denote fields.

1. Suppose  $\varphi : R \rightarrow S$  is a ring isomorphism. Let  $a \in R$ . Show that  $a \in U(R)$  if and only if  $\varphi(a) \in U(S)$ .
2. Suppose  $R$  and  $S$  are isomorphic rings. Show that  $R$  is a field if and only if  $S$  is a field.
3. Let  $L$  be the splitting field of  $x^3 + 9x + 3$  over  $\mathbb{Q}$ . Show that  $[L : \mathbb{Q}] = 6$  and that  $\text{Gal}(L/\mathbb{Q}) \simeq S_3$ .
4. Suppose  $\varphi : R \rightarrow S$  is a ring isomorphism. Let  $a \in R$ . Show that  $a$  is irreducible in  $R$  if and only if  $\varphi(a)$  is irreducible in  $S$ .
5. Suppose  $\varphi : R \rightarrow S$  is a ring isomorphism. Let  $I \subset R$  be an ideal. Show that  $I$  is a prime ideal if and only if  $\varphi(I)$  is a prime ideal of  $S$ .
6. Suppose  $F \subset K \subset \mathbb{C}$  and  $[K : F] = 2$ . Show that  $K/F$  is a Galois extension.

More practice problems to be posted.