Math 636

Final - Quiz Component

1. The system of linear equations

$$2x_2 - x_3 = 3$$
$$2x_1 + x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 3x_3 = 2$$

- (a) is consistent with a unique solution.
- (b) is consistent with infinitely many solutions.
- (c) is inconsistent.
- **2.** Which of the sets of polynomials in $P_2(\mathbb{R})$ is linearly dependent?
 - (a) $\{1+2x+2x^2, 1+x+x^2, x^2+4x+4\}$ (b) $\{2, 2+3x, 2+3x+4x^2\}$

 - (c) $\{3 + 2x 2x^2, 2 2x + 2x^2, 1 + 4x + 3x^2\}$ (d) $\{-1 + x + 3x^2, 2 + 4x^2, 6 3x 3x^2\}$
- **3.** Let A be an invertible matrix. Which of the following is false?
 - (a) A must be $n \times n$.
 - (b) $\operatorname{Row}(A)^{\perp} = \operatorname{Null}(A^T)$.
 - (c) $\det(A^{-1}) \neq \det(A)$.
 - (d) The columns of A form a basis for \mathbb{R}^n .
- **4.** Which of the following statements is true?
 - (a) If $A\vec{v} = \lambda \vec{v}$, then \vec{v} is an eigenvector of A.
 - (b) If A is $n \times n$ and rank(A) < n, then A has a row of zeroes.
 - (c) If P is an orthogonal matrix, then P is invertible.
 - (d) If $\{\vec{v}_1,\ldots,\vec{v}_k\}$ is a linearly independent set of vectors in \mathbb{R}^n , then $A=[\vec{v}_1,\ldots,\vec{v}_k]$ is invertible.
- **5.** Let \mathbb{V} be a finite dimensional vector space and let $\{\vec{v}_1,\ldots,\vec{v}_k\}$ be a linearly independent set in \mathbb{V} . Which of the following statements is false?
 - (a) dim $\mathbb{V} \geq k$.
 - (b) Span $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is a subspace of \mathbb{V} .
 - (c) Every basis for \mathbb{V} contains the vectors $\vec{v}_1, \ldots, \vec{v}_k$.
 - (d) If dim $\mathbb{V} = k$, then Span $\{\vec{v}_1, \dots, \vec{v}_k\} = \mathbb{V}$.

- **6.** What is the geometric multiplicity of the eigenvalue $\lambda = 2$ of $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$?
 - (a) $g_{\lambda} = 1$
 - (b) $g_{\lambda} = 2$
 - (c) $g_{\lambda} = 3$
- 7. Which of the following is the vector \vec{x} that is closest to being a solution for the system

$$x_1 + x_2 = -2$$
$$-x_1 - 2x_2 = 3$$
$$3x_1 - 2x_2 = 2$$

- (a) $\begin{bmatrix} -3/10 \\ -43/30 \end{bmatrix}$ (b) $\begin{bmatrix} 9/20 \\ 43/20 \end{bmatrix}$ (c) $\begin{bmatrix} -1/4 \\ -43/36 \end{bmatrix}$ (d) $\begin{bmatrix} 1/4 \\ 43/36 \end{bmatrix}$
- 8. Which of the following is the best fitting equation of the form y = a + bxfor the following data?

- (a) $\frac{5}{3} \frac{7}{2}x$
- (b) $\frac{5}{3} + \frac{7}{2}x$
- (c) 2 3x
- (d) $\frac{11}{6} \frac{10}{3}x$
- **9.** In \mathbb{R}^4 using the inner product $\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3 + x_4 y_4$. the following four vectors are orthogonal:

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 5 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 0 \end{bmatrix}, \vec{v}_4 = \begin{bmatrix} -1 \\ -1 \\ 1 \\ 6 \end{bmatrix}$$

Let $\mathbb{S} = \operatorname{Span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$. The projection of $\vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ onto \mathbb{S} is:

- (a) $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} 0 \\ 0 \\ 2 \\ 7 \end{bmatrix}$ (c) $\begin{bmatrix} 8/\sqrt{7} \\ 8/\sqrt{7} \\ 6/\sqrt{7} \\ 1/\sqrt{7} \end{bmatrix}$ (d) $\begin{bmatrix} 8/7 \\ 8/7 \\ 6/7 \\ 1/7 \end{bmatrix}$

10. Let
$$A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \in M_{2 \times 2}(\mathbb{R})$ and define $\mathbb{S} = \mathrm{Span}\{A_1, A_2, A_3\}$. If $D = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$, then $\mathrm{proj}_{\mathbb{S}}(D)$ is:

(a)
$$\begin{bmatrix} 7/6 & 1 \\ 0 & 5/6 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2/3 & 0 \\ 2/3 & 2/3 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 6 & 2 \\ 4 & 4 \end{bmatrix}$

For questions 11 - 20, determine if the statement is True or False. You should make sure that you have a proof of each true statement and a counter example for each false statement.

- 11. If the reduced row echelon form of $(A \lambda I)$ is I, then λ is not an eigenvalue of A.
 - (a) True.
 - (b) False.
- 12. If a system of 3 linear equations in 4 unknowns is such that the coefficient matrix has a rank of 2, then the system has infinitely many solutions.
 - (a) True.
 - (b) False.
- **13.** If A is not diagonalizable, then A is not invertible.
 - (a) True.
 - (b) False.
- **14.** If $\vec{v_1}, \vec{v_2} \in \mathbb{R}^3$, then $\vec{x} = s\vec{v_1} + t\vec{v_2}, s, t \in \mathbb{R}$ is a vector equation for a plane in \mathbb{R}^3 .
 - (a) True.
 - (b) False.
- **15.** If A is a 3×3 matrix, and \vec{x} , \vec{y} , and \vec{z} are vectors such that $A\vec{x} = 2\vec{x}$, $A\vec{y} = 3\vec{y}$, and $A\vec{z} = 5\vec{z}$, then $\det(A) = 30$.
 - (a) True.
 - (b) False.
- **16.** If A is diagonalizable, then A^T is diagonalizable.
 - (a) True.
 - (b) False.
- 17. If A is invertible and A is similar to B, the B is invertible.
 - (a) True.
 - (b) False.

- 18. If $\vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is a solution of a homogenous system of linear equations, then the system has infinitely many solutions.
 - (a) True.
 - (b) False.
- **19.** Let $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^n$ with $\vec{a} \neq \vec{0}$. If $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \cdot \vec{c} = 0$, then $\vec{b} = \vec{c}$.
 - (a) True.
 - (b) False.
- **20.** Let $\vec{b}, \vec{v} \in \mathbb{R}^3$. If $\vec{b} \neq \vec{0}$, then the set with vector equation $\vec{x} = \vec{b} + t\vec{v}$ is not a subspace of \mathbb{R}^3 .
 - (a) True.
 - (b) False.