1. Find a and b to obtain the best fitting equation of the form $y=a+b t^{2}$ for the given data.

$$
\begin{array}{c|c|c|c|c|c|}
t & -2 & -1 & 0 & 1 & 2 \\
\hline y & -2 & 0 & 1 & -1 & -3
\end{array}
$$

2. Assume that A is an $m \times n$ matrix and B is an $n \times m$ matrix where $m \neq n$. Prove that if $A B=I_{m}$, then $\operatorname{rank}(B)=m$.
3. Prove Corollary 6.3 .4 which states: If A is an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, then A is diagonalizable if and only if $g_{\lambda_{i}}=a_{\lambda_{i}}$ for $1 \leq i \leq k$.
4. Let \mathbb{W} be a subspace of a finite dimensional inner product space \mathbb{V}. Prove that $\operatorname{proj}_{\mathbb{W}}(\vec{v})$ is independent of basis. That is, prove that if $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ and $\left\{\vec{w}_{1}, \ldots, \vec{w}_{k}\right\}$ are both orthogonal bases for \mathbb{W}, then

$$
\frac{\left\langle\vec{v}, \vec{v}_{1}\right\rangle}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}+\cdots+\frac{\left\langle\vec{v}, \vec{v}_{k}\right\rangle}{\left\|\vec{v}_{k}\right\|^{2}} \vec{v}_{k}=\frac{\left\langle\vec{v}, \vec{w}_{1}\right\rangle}{\left\|\vec{w}_{1}\right\|^{2}} \vec{w}_{1}+\cdots+\frac{\left\langle\vec{v}, \vec{w}_{k}\right\rangle}{\left\|\vec{w}_{k}\right\|^{2}} \vec{w}_{k}
$$

NOTE: Notice that our definition of $\operatorname{proj}_{\mathbb{W}}$ is dependent on the choice of orthogonal basis. So, you cannot assume that $\operatorname{proj}_{\mathbb{W}}(\vec{v})=\operatorname{proj}_{\mathbb{W}}(\vec{v})$ if we are using different bases. This is what you are supposed to prove in this question.

