Math 109. Instructor: Chow Homework \#2. Due 3:00 pm on Monday, July 11, 2016. REVISED

Problem 1: Prove, using logical argument from the definitions, that

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C) .
$$

That is, prove that $x \in A \cup(B \cap C)$ if and only if $x \in(A \cup B) \cap(A \cup C)$.
Hint: You may use the fact that: ' P or (Q and R)' is logically equivalent to ' $(P$ or $Q)$ and (P or $R)^{\prime}$ '.

Problem 2:
(i) Prove: $\forall x \in \mathbb{Z}^{+}, \exists y \in \mathbb{Z}^{+}, y>3 x+2$.
(ii) Prove: $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, y>x^{2}+9$.
(iii) DISProve: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y<x^{2}$.
(iv) Disprove: $\forall n \in \mathbb{Z}^{+}, \exists m \in \mathbb{Z}^{+}, n \leq m^{2} \leq n+39$.

Problem 3:

(i) Prove: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, 2 x y=x^{3}+2 x^{2}$.
(ii) Disprove: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, 2 x y>1$.
(iii) Prove: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R},\left(x^{2}+1\right) y=x^{3}+2 x^{2}$.
(iv) Prove: $\forall x \in \mathbb{R}-\mathbb{Q}, \exists y \in \mathbb{R}-\mathbb{Q}, x y=1$.

Problem 4: Let $n \in \mathbb{Z}$.
Let $P(n)$ be the statement: There exists $q \in \mathbb{Z}$ such that $n=5 q+3$.
Let $Q(n)$ be the statement: There exists $p \in \mathbb{Z}$ such that $n^{2}=5 p+4$.
Prove that $P(n)$ implies $Q(n)$.
Hint: This is a direct argument, not a proof by induction.
Problem 5: Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. The mean value theorem says that there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. Use the mean value theorem to prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{3} x^{3}+3 x^{2}+10 x$ is strictly increasing. (Recall that strictly increasing means that for any $a<b, f(a)<f(b)$.)

Problem 6: We say that $\lim _{x \rightarrow \infty} f(x)=\infty$ if for any $M \in \mathbb{R}$ there exists $N \in \mathbb{R}$ such that if $x \geq N$, then $f(x) \geq M$.

The intermediate value theorem says that if $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function and if y is between $f(a)$ and $f(b)$, then there exists $x \in(a, b)$ such that $f(x)=y$.
(a) Define, analogously to the above, what it means for $\lim _{x \rightarrow-\infty} f(x)=$ $-\infty$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$. Prove: If $y \in \mathbb{R}$, then there exists $x \in \mathbb{R}$ such that $f(x)=y$.

Problem 7: Let \mathbb{I} denote the irrational numbers. Define the function

$$
f: \mathbb{I} \times \mathbb{I} \rightarrow \mathbb{R} \times \mathbb{R}
$$

by

$$
f(x, y)=\left(x+y, x^{2}+y^{2}\right) .
$$

(i) Does there exist $(x, y) \in \mathbb{I} \times \mathbb{I}$ such that $f(x, y) \in \mathbb{I} \times\{1\}$?
(ii) Does there exist $(x, y) \in \mathbb{I} \times \mathbb{I}$ such that $f(x, y)=\mathbb{Q} \times \mathbb{I}$?

Problem 8: Given $n \in \mathbb{N}$, let $\mathbb{N}_{n}=\{1,2, \ldots, n\}=\{a \in \mathbb{Z} \mid 1 \leq a \leq n\}$. Let X be a finite set. The number of elements in X, called the cardinality of X, is denoted by $|X|$. We have $|X|=n$ if and only if there exists a bijection $f: \mathbb{N}_{n} \rightarrow X$. Answer correctly the following (no need to prove anything).
(i) If $X \subseteq Y$, then how are $|X|$ and $|Y|$ related?
(ii) If $f: A \rightarrow B$ is an injection, then how are $|A|$ and $|B|$ related?
(iii) If $g: C \rightarrow D$ is a surjection, then how are $|C|$ and $|D|$ related?
(iv) If $h: E \rightarrow F$ is a bijection, then how are $|E|$ and $|F|$ related?

Problem 9: Do Problem 18 on p. 118.
Problem 10: Do Problem 20 on p. 118.
Remark: The original problems \#11 and \#12 on the inclusion-exclusion principle for 3 sets, have been moved to the 4th HW assignment.

