

Math 636 - Assignment 10 - Written Component

Due: Friday, July 22 at 4:00PM

1. Consider the function on \mathbb{R}^2 defined by

$$\left\langle \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \right\rangle = 2v_1w_1 - v_1w_2 - v_2w_1 + v_2w_2$$

(a) Prove that this function is an inner product on \mathbb{R}^2 .

(b) Show that the standard basis vectors \vec{e}_1, \vec{e}_2 for \mathbb{R}^2 are not orthogonal under this inner product.

(c) Find a basis for \mathbb{R}^2 that is orthogonal under this inner product.

2. Let $\mathcal{B} = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 4 & -2 \\ -2 & -2 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \right\}$ be a spanning set for a subspace \mathbb{S} of $\mathbb{M}_{2 \times 2}(\mathbb{R})$. Use the Gram-Schmidt procedure on \mathcal{B} (in this order) to find an orthonormal basis for \mathbb{S} .

3. Let A and B be $n \times n$ matrices. If there exists an orthogonal matrix P such that $P^TAP = B$, then we say that A and B are **orthogonally similar**.

(a) Prove that if A and B are orthogonally similar and are both invertible, then A^{-1} and B^{-1} are also orthogonally similar.

(b) Prove that if C and D are orthogonally similar, then C^2 and D^2 are also orthogonally similar.

4. Let \mathbb{V} be an n -dimensional real inner product space and let $\langle \vec{x}, \vec{y} \rangle$ and $[\vec{x}, \vec{y}]$ both be two different inner products on \mathbb{V} . Prove that there exists a linear mapping $L : \mathbb{V} \rightarrow \mathbb{V}$ such that

$$[L(\vec{x}), L(\vec{y})] = \langle \vec{x}, \vec{y} \rangle, \quad \text{for all } \vec{x}, \vec{y} \in \mathbb{V}$$