

Math 636 - Assignment 8 - Written Component

Due: Friday, July 8 at 4:00PM

1. Find a basis for the four fundamental subspaces of $A = \begin{bmatrix} 1 & 0 & 1 & 1 & -2 \\ 3 & 1 & 4 & 1 & 1 \\ 1 & -3 & -2 & 2 & 2 \end{bmatrix}$.
2. Prove or disprove the following statement: There exists a matrix $A \in \mathbb{M}_{3 \times 3}(\mathbb{R})$ such that $\text{Null}(A) = \text{Col}(A)$.
3. Let $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the linear mapping defined by

$$L(x_1, x_2, x_3) = (2x_1 - x_2, x_2 + x_3, x_3 - 3x_1)$$

and consider the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$ for \mathbb{R}^3 .

- (a) Find $[L]$.
- (b) Find $[L]_{\mathcal{B}}$
- (c) Find a matrix P such that $[L]_{\mathcal{B}} = P^{-1} [L] P$
4. Let \mathcal{B} and \mathcal{C} both be bases for \mathbb{R}^n and let $L : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear operator.
 - (a) Prove that $[L]_{\mathcal{B}}$ and $[L]_{\mathcal{C}}$ are similar.
 - (b) Prove that $\text{rank}([L]_{\mathcal{B}}) = \dim(\text{Range}(L))$.