Math 636-Assignment 8 - Written Component
 Due: Friday, July 8 at 4:00PM

1. Find a basis for the four fundamental subspaces of $A=\left[\begin{array}{ccccc}1 & 0 & 1 & 1 & -2 \\ 3 & 1 & 4 & 1 & 1 \\ 1 & -3 & -2 & 2 & 2\end{array}\right]$.
2. Prove of disprove the following statement: There exists a matrix $A \in \mathbb{M}_{3 \times 3}(\mathbb{R})$ such that $\operatorname{Null}(A)=$ $\operatorname{Col}(A)$.
3. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear mapping defined by

$$
L\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}-x_{2}, x_{2}+x_{3}, x_{3}-3 x_{1}\right)
$$

and consider the basis $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ for \mathbb{R}^{3}.
(a) Find $[L]$.
(b) Find $[L]_{\mathcal{B}}$
(c) Find a matrix P such that $[L]_{\mathcal{B}}=P^{-1}[L] P$
4. Let \mathcal{B} and \mathcal{C} both be bases for \mathbb{R}^{n} and let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator.
(a) Prove that $[L]_{\mathcal{B}}$ and $[L]_{\mathcal{C}}$ are similar.
(b) Prove that $\operatorname{rank}\left([L]_{\mathcal{B}}\right)=\operatorname{dim}(\operatorname{Range}(L))$.

