Math 636

Assignment 9 - Quiz Component

1. Let
$$A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$
. Which of the following is not an eigenvector of A ?
(a) $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ (c) $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$

2. What is the geometric multiplicity of the eigenvalue $\lambda = 2$ of $A = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 6 & 2 \\ 3 & -6 & -1 \end{bmatrix}$?

- (a) $g_{\lambda} = 1$ (b) $g_{\lambda} = 2$
- (c) $g_{\lambda} = 3$

3. Let $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$. Which of the following is not an eigenvalue of A? (a) $\lambda = 0$ (b) $\lambda = 1$ (c) $\lambda = 2$ (d) $\lambda = 3$

4. Let $B = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 2 & 2 \\ -5 & -1 & -4 \end{bmatrix}$. Which of the following is not an eigenvalue of B? (a) $\lambda = 1$ (b) $\lambda = -1$ (c) $\lambda = 2$ (d) $\lambda = -2$ 5. Which of the following matrices is diagonalizable?

	1	2	1
(a)	-2	6	2
	3	-6	-1
	[-3	2	1]
(b)	0	-3	0
	0	1	1
	3	2]	-
(c)	2	3	
. ,	1 -	-1	
	[_1	3	7]
(d)	0	5	-2
	0	0	-8
	-		_

For questions 6 - 10, determine if the statement is True or False. You should make sure that you have a proof of each true statement and a counter example for each false statement.

- **6.** If A is diagonalizable, then A and its reduced row echelon form R have the same eigenvalues.
 - (a) True.
 - (b) False.
- 7. The columns of an $n \times n$ matrix A are linearly dependent if and only if $\lambda = 0$ is an eigenvalue of A.
 - (a) True.
 - (b) False.

8. If A and B are diagonalizable, then A + B is diagonalizable.

- (a) True.
- (b) False.

9. If A is invertible, then A is diagonalizable.

- (a) True.
- (b) False.

10. If A is diagonalizable, then A is invertible.

- (a) True.
- (b) False.