1. Let $A=\left[\begin{array}{lll}3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5\end{array}\right]$. Which of the following is not an eigenvector of A ?
(a) $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
2. What is the geometric multiplicity of the eigenvalue $\lambda=2$ of $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & 6 & 2 \\ 3 & -6 & -1\end{array}\right]$?
(a) $g_{\lambda}=1$
(b) $g_{\lambda}=2$
(c) $g_{\lambda}=3$
3. Let $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$. Which of the following is not an eigenvalue of A ?
(a) $\lambda=0$
(b) $\lambda=1$
(c) $\lambda=2$
(d) $\lambda=3$
4. Let $B=\left[\begin{array}{ccc}3 & 1 & 2 \\ 2 & 2 & 2 \\ -5 & -1 & -4\end{array}\right]$. Which of the following is not an eigenvalue of B ?
(a) $\lambda=1$
(b) $\lambda=-1$
(c) $\lambda=2$
(d) $\lambda=-2$
5. Which of the following matrices is diagonalizable?
(a) $\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & 6 & 2 \\ 3 & -6 & -1\end{array}\right]$
(b) $\left[\begin{array}{ccc}-3 & 2 & 1 \\ 0 & -3 & 0 \\ 0 & 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}3 & 2 \\ 2 & 3 \\ 1 & -1\end{array}\right]$
(d) $\left[\begin{array}{ccc}-1 & 3 & 7 \\ 0 & 5 & -2 \\ 0 & 0 & -8\end{array}\right]$

For questions 6-10, determine if the statement is True or False. You should make sure that you have a proof of each true statement and a counter example for each false statement.
6. If A is diagonalizable, then A and its reduced row echelon form R have the same eigenvalues.
(a) True.
(b) False.
7. The columns of an $n \times n$ matrix A are linearly dependent if and only if $\lambda=0$ is an eigenvalue of A.
(a) True.
(b) False.
8. If A and B are diagonalizable, then $A+B$ is diagonalizable.
(a) True.
(b) False.
9. If A is invertible, then A is diagonalizable.
(a) True.
(b) False.
10. If A is diagonalizable, then A is invertible.
(a) True.
(b) False.

