ECOS2903 - Tutorial 4

1. A monopolist has an indirect demand function given by $p(q)$, where $p^{\prime}(q)<$ 0 . The monopolist's marginal cost is constant and equal to c. In addition, the monopolist has to pay a per-unit tax of t on output it produces. The monopolist is a profit maximizers and chooses q.
(i) Write down an expression for profit and the necessary condition for an interior stationary point. Assume total revenue is concave. Check that the stationary point is a maximum.
(ii) The condition in (i) implicitly defines $q(c+t)$. Find an expression for $q^{\prime}(c+t)$ and sign it.
(iii) The government sets the tax to maximize tax revenue, $T=t \cdot q(c+t)$. Write down the necessary condition for an interior stationary point. Assume $q^{\prime \prime}(c+t)<0$. Check that the stationary point is a maximum.
(iv) The condition in (iii) implicitly defines $t(c)$. Find an expression for $t^{\prime}(c)$ and sign it. Provide some intuition for this result.
2. Total cost is given by $C(q)=F+v(q)$, where F is fixed cost and $v(q)$ is variable cost with $v^{\prime}(q)>0$ and $v^{\prime \prime}(q)>0$.
(i) Write down an expression for average cost, $A C(q)$.
(ii) Write down the first-order condition for the q that minimises average cost. Assume the second-order condition for a minimum is satisfied.
(iii) Write this first order condition in terms of average and marginal cost.
(iv) This first-order condition implicitly defines $q^{*}(F)$. Find an expression for $q^{*^{\prime}}(F)$ and sign it.
(v) Substitute $q^{*}(F)$ into $A C(q)$ to get $A C^{*}(F)$. Differentiate $A C^{*}(F)$ with respect to F and simplify using (ii).
(vi) Sign the derivative in (v) and interpret.
3. Let the indirect demand function be given by $p(q), q \in[0, \bar{q}]$, where $p(\bar{q})=0$ and $p^{\prime}(q)<0$.
(i) Graph $p(q)$ on a diagram with p on the vertical axis. Is $p(q)$ one-to-one?
(ii) The direct demand function is given by $q(p)$ and is the inverse of the indirect demand function. What is its domain and what is the sign of $q^{\prime}(p)$?
(iii) A monopolist can charge a fixed fee and a per-unit price. The fixed fee equals consumer surplus at price p. Write an expression for consumer surplus as a function of p. (hint: use the direct demand function)
(iv) Marginal cost is constant and equal to c. The monopolist's total profit is the sum of the fixed fee and the profit it earns by selling output at price p. Write down an expression for the monopolist's total profit as a function of p.
(v) Assume an interior solution. Find the price that maximises the monopolist's profit. (check that it is a maximum)
(vi) Write an expression for the fixed fee that maximises profit.
(vii) Discuss the economics.

Other Questions

4. Determine possible local extreme points for
(i) $f(x)=x^{3}-3 x+8$
(ii) $f(x)=x^{3} \cdot e^{x}$
5. Decide whether $f(x)=\frac{x}{1+x^{2}}$ is convex and determine possible inflection points.
6. A firm's production function is $Q(L)=12 L^{2}-\frac{1}{20} L^{3}$, where denotes the number of workers, with $L \in[0,200]$.
(a) What size of the work force, L^{*}, maximises output? What size of the workforce, $L^{* *}$, maximises output per worker?
(b) Note that $Q^{\prime}\left(L^{* *}\right)=\frac{Q\left(L^{* *}\right)}{L^{* *}}$. Is this a coincidence?
7. Find the following integrals.
(a) $\int \frac{1}{\sqrt{x}} d x$
(b) $\int 3 e^{-2 x} d x$
8. Compute the area bounded by the graph of the function over the indicated interval.
(a) $f(x)=3 x^{2}$ over $[0,2]$.
(b) $f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ over $[-1,1]$.
9. Put $F(x)=\int_{0}^{x}\left(t^{2}+2\right) d t$ and $G(x)=\int_{0}^{x^{2}}\left(t^{2}+2\right) d t$. Find $F^{\prime}(x)$ and $G^{\prime}(x)$.
