The University of Sydney
 School of Mathematics and Statistics

Vector Calculus Assignment

This assignment is due by Friday 20 May 2016 at 4:00pm and is worth 5% of your assessment for Vector Calculus. Submit assignments using turnitin.
Check that EVERY page of your assignment is legible and the correct way up before hitting the CONFIRM button

Let R be the region shown above bounded by the curve $C=C_{1} \cup C_{2}$.
C_{1} is a semicircle with centre at the origin O and radius $\frac{9}{5}$.
C_{2} is part of an ellipse with centre at $(4,0)$, horizontal semi-axis $a=5$ and vertical semi-axis $b=3$.

1. (a) Parametrise C_{1} and C_{2}. Hint: Use $t:-t_{0} \rightarrow t_{0}$ as limits when parametrising C_{2} and explain why $\cos \left(t_{0}\right)=-\frac{4}{5}$ and $\sin \left(t_{0}\right)=\frac{3}{5}$.
(b) Calculate

$$
\oint_{C} \mathbf{v} \cdot d \mathbf{r}
$$

where $\mathbf{v}=\frac{1}{2}(-y \mathbf{i}+x \mathbf{j})$.
(c) Use Green's theorem and your answer from 1(b) to determine the area of R and then verify that it is less than $\pi a b$.
2. (a) Give the cartesian equation for the ellipse used to define C_{2}.
(b) Show that $9+4 r \cos \theta=5 r$ is the equation of that ellipse when written in polar coordinates (r, θ). Hint: Square both sides first.
(c) Calculate

$$
\iint_{R} \frac{1}{r^{3}} d A
$$

using polar coordinates. Hint: Integrate with respect to r first and then θ. Explain why the limits on the outer integral should be $\theta= \pm \frac{\pi}{2}$.
3. If $T(\mathbf{r})=T_{0} / r^{3}$ is the temperature profile in the region R, then use the previous results to calculate the average temperature in R when $T_{0}=1000$. Verify that the average temperature is between the minimum and maximum temperatures in R.

