\qquad
\qquad

Chapter 5 Practice - Gases (HW - Due at Start of Lecture Monday 4/24)

1. A sample of $12.07 \mathrm{~cm}^{3}$ of gaseous CO_{2} is in a closed vessel connected to a tube with a column of mercury open at one end. The pressure of the CO_{2} in the vessel is 1.34 atm . How many mm of Hg should be added to the open end in order to decrease the volume of CO_{2} to $11.87 \mathrm{~cm}^{3}$? (Assume the temperature is constant and $\mathrm{P}_{\mathrm{atm}}=1.00 \mathrm{~atm}$)

2. Suppose that an ocean of mercury replaced all the air of the earth. How deep would this ocean have to be to exert the same pressure as the air?
3. Suppose that an ocean of water replaced all the air of the earth. How deep would this ocean have to be to exert the same pressure as the air?
4. A weather balloon filled with helium has a volume of $1.0 \times 10^{4} \mathrm{~L}$ at 1.00 atm and $30.0^{\circ} \mathrm{C}$. It ascends to an altitude at which the pressure is only 0.60 atm and the temperature is $-20.0^{\circ} \mathrm{C}$. What is the volume of the balloon then? (Assume the balloon stretches in a way that the pressure inside stays close to that of the outside.)
5. Convert the gas constant $8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ into units of L^{*} atm $/ \mathrm{mol}{ }^{*} \mathrm{~K}$ - show your work clearly! (No credit for simply writing the answer)
\qquad
\qquad MW or TuTH
6. A gas mixture in a closed 1.50 -Liter vessel at $25.0^{\circ} \mathrm{C}$ contains 4.5 mol of $\mathrm{Br}_{2}(\mathrm{~g})$ and 33.1 mol of $\mathrm{F}_{2}(\mathrm{~g})$.
(a) Compute the partial pressure of $\mathrm{Br}_{2}(\mathrm{~g})$ in the mixture and the total pressure.
(b) Then, the following reaction occurs:

$$
\mathrm{Br}_{2}(\mathrm{~g})+5 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrF}_{5}(\mathrm{~g})
$$

The reaction is stopped when 2.0 mol of BrF_{5} are present. Determine the mole fraction of Br_{2} in the new mixture at that point. What is the total pressure?
8. Ammonia and hydrogen chloride react to form solid ammonium chloride,
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$

Two 2.50-L flasks at $25.0^{\circ} \mathrm{C}$ are connected by a valve, as shown in the drawing. One flask contains a Presssure of $\mathrm{NH}_{3}(\mathrm{~g})$ of 2.87 atm , and the other contains $\mathrm{HCl}(\mathrm{g})$ at a pressure of 1.34 atm . The stopcock is opened and the gases react until one is completely consumed.

What will be the final pressure of the system after the reaction is complete? (Neglect the volume of the ammonium chloride formed.)

