
Quiz #7: Analysis of Algorithms/Complexity Classes ICS-33 Winter 2017

 Name (Last, First) ____________________

 Lab # ____________________

When working on this quiz, recall the rules stated on the Academic Integrity statement that you signed.
There is no helper project file for this assignment. Submit your completed written exam as the start of lecture on
Friday. If you print a copy of this document it should be one page, 2-sided (no staples, folding, etc.) or you
will lose a bit of credit. I will post my solutions to EEE reachable via the Solutions link on Friday after class.

1. (3 pts) Sketch approximate Size vs. Time curves for the two algorithmic complexity classes required in each of the pictures
below: for one, write Impossible instead: (a) an O(N) algorithm that is always faster than an O(N2) algorithm.. (b) an O(N)
algorithm that is never faster than an O(N2) algorithm. (c) an O(N) algorithm that is sometimes faster than an O(N2) algorithm.

2. (2 pts) (a) What “better-known”/simpler complexity class is equivalent to O(N log N2); briefly explain why.
(b) Explain why it makes little sense for an algorithm to be in the complexity class O(1/n)?

(a)

(b)

3. (6 pts) Assume that functions f1 and f2 compute the same result by processing the same argument. Empirically we
find that Tf1(N) = 110 N and Tf2(N) = 10 N log2 N where the times are in seconds. (a) Solve algebraically what size N
would these two functions take the same amount of time? Show how you calculated your answer. (b) for what size
arguments is it better to use f1? f2? (c) Briefly describe how we can write a simple function f that runs as fast as the
fastest of f1 and f2 for all size inputs. (d1) What exact integer value N (±1) solves 𝟐𝟐√𝑵 = 10 (Log2 N)2+1000?
Use a calculator, spreadsheet, or a program to guess and refine your answer (try plotting values to see where
the curves meet). (d2) Based on your calculation, which complexity class 𝑶(√𝑵) or O((Log2 N)2) is lower?

 (a)

(b) f1 is faster for all N …
 f2 is faster for all N …

(c)

(d1)

(d2)

(a)

Time

Size (b)

Time

Size (c)

Time

Size

4. (6 pts) The following functions each determine if any two values in alist sum to asum. As is shown in the
notes, (a) write the complexity class of each statement on its right, where N is len(alist). (b) Write the full
calculation that computes the complexity class for the entire function. (c) Simplify what you wrote in (b).
def sums_to_1 (alist,asum): def sumsto_2 (alist,asum):
 for f in alist: aset = set(alist)
 for s in alist: for v in alist:
 if f+s == asum: if asum-v in aset
 return (f,s) return(v,asum-v)
 return None return None

(b) (b)

(c) (c)

5. (4 pts) Assume that function f is in the complexity class O(N (log2 N)2), and that for N = 1,000 the program
runs in 9 seconds.
(1) Write a formula, T(N) that computes the approximate time that it takes to run f for any input of size N.
Show your work/calculations by hand, approximating logarithms, then finish/simplify all the arithmetic.

(2) Compute how long it will take to run when N = 1,000,000 (which is also written 10
6
). Show your

work/calculations by hand, approximating logarithms, finish/simplify all the arithmetic.

6. (3 pts) Fill in the last line of the three empty rows, which shows the size of a problem can be solved in the same
amount of time for each complexity class on a new machine that runs four times as fast as the old one. Solve
algebraically when you can, use Excel or a calculator when you must: I used a calculator only for O(N Log2 N) and
solved it to 3 significant digits. Solving a problem in the same amount of time on the new machine is equivalent to
solving a problem that takes four times the amount of time on the old machine. See O(N) for an example.

N = Problem Size Complexity Class Time to Solve on Old
Machine (secs)

N Solvable in the same Time
on a New Machine 4x as Fast

10
6
 O(Log2 N) 1

10
6
 O(N) 20 4 x 10

6

10
6
 O(N Log2 N) 20

10
5
 O(N2) 1000

