/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package assignment1;

import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;

/**
 *
 * @author krupa
 */
public class InstructorTest {

 public InstructorTest() {
 }

 @BeforeClass
 public static void setUpClass() {
 }

 @AfterClass
 public static void tearDownClass() {
 }

 @Before
 public void setUp() {
 }

 @After
 public void tearDown() {
 }

 @Test
 public void testSomeMethod() {

 }
 public class InstructorTest {
 Instructor validInstructor;

 public InstructorTest() {
 }

 @BeforeClass
 public static void setUpClass() {
 }

 @AfterClass
 public static void tearDownClass() {
 }

 @Before
 public void setUp() {
 validInstructor = new Instructor("Alga", "Rithem","14 Knowledge Ave", "Utopia", "ON", "Y6Y3D3",
 LocalDate.of(1974, Month.DECEMBER, 31), 2000123, LocalDate.of(2015, Month.JANUARY, 1));
 }

 @After
 public void tearDown() {
 }

 /**
 * Test of setHireDate method, of class Instructor.
 */
 @Test
 public void testSetHireDateValid() {
 LocalDate dateHired = LocalDate.of(2014, Month.JANUARY, 1);
 validInstructor.setHireDate(dateHired);
 assertEquals(validInstructor.getHireDate(), LocalDate.of(2014, Month.JANUARY, 1));
 }

 /**
 * Test of setHireDate method, of class Instructor.
 */
 @Test
 public void testSetHireDateInvalid() {
 LocalDate dateHired = LocalDate.of(2018, Month.JANUARY, 1);
 try
 {
 validInstructor.setHireDate(dateHired);
 fail("The hire date is in the future and should have triggered an exception");
 }
 catch (IllegalArgumentException e)
 {
 System.out.printf("Hire date in the future, exception = \"%s\"%n", e.getMessage());
 }
 }

 /**
 * Test of setHireDate method, of class Instructor.
 */
 @Test
 public void testSetHireDateInvalid2() {
 LocalDate dateHired = LocalDate.of(1900, Month.JANUARY, 1);
 try
 {
 validInstructor.setHireDate(dateHired);
 fail("The hire date was more than 80 years ago, it should throw an exception.");
 }
 catch (IllegalArgumentException e)
 {
 System.out.printf("Hire date in the future, exception = \"%s\"%n", e.getMessage());
 }
 }

 /**
 * Test of addTeachableCourse method, of class Instructor.
 */
 @Test
 public void testAddTeachableCourse() {
 String courseCode = "COMP1008";
 validInstructor.addTeachableCourse(courseCode);
 ArrayList<String> expResult = new ArrayList<>();
 expResult.add("COMP1008");
 assertEquals(validInstructor.getTeachableCourses(), expResult);
 }

 /**
 * Test of getYearsAtCollege method, of class Instructor.
 */
 @Test
 public void testGetYearsAtCollegeAfterAnniversary() {
 int expResult = 2;
 int result = validInstructor.getYearsAtCollege();
 assertEquals(expResult, result);
 }

 /**
 * Test of getYearsAtCollege method, of class Instructor.
 */
 @Test
 public void testGetYearsAtCollegeBeforeAnniversary() {
 int expResult = 16;
 validInstructor.setHireDate(LocalDate.of(2000, Month.DECEMBER, 31));
 int result = validInstructor.getYearsAtCollege();
 assertEquals(expResult, result);
 }

 /**
 * Test of canTeach method, of class Instructor.
 */
 @Test
 public void testCanTeachFalse() {
 String courseCode = "COMP1008";
 boolean expResult = false;
 boolean result = validInstructor.canTeach(courseCode);
 assertEquals(expResult, result);
 }

 /**
 * Test of canTeach method, of class Instructor.
 */
 @Test
 public void testCanTeachTrue() {
 String courseCode = "comp1008";
 boolean expResult = true;
 validInstructor.addTeachableCourse(courseCode);
 boolean result = validInstructor.canTeach(courseCode);
 assertEquals(expResult, result);
 }

 /**
 * Test of listOfSubjectsCertifiedToTeach method, of class Instructor.
 */
 @Test
 public void testListOfSubjectsCertifiedToTeach() {
 String expResult = "COMP1008, COMP2003";
 validInstructor.addTeachableCourse("COMP1008");
 validInstructor.addTeachableCourse("COMP2003");
 String result = validInstructor.listOfSubjectsCertifiedToTeach();
 assertEquals(expResult, result);
 }

 /**
 * Test of the constructor with an invalid employee number
 */
 @Test
 public void testInstructorSetupInvalidEmployeeNumber() {

 try
 {
 Instructor invalidInstructor = new Instructor("Alga", "Rithem","14 Knowledge Ave", "Utopia", "ON", "Y6Y3DR",
 LocalDate.of(1974, Month.DECEMBER, 31), 0, LocalDate.of(2015, Month.JANUARY, 1));
 fail("The employee number is not valid");
 }
 catch (IllegalArgumentException e)
 {
 System.out.printf("Instructor constructor with invalid employee number exception = \"%s\"%n", e.getMessage());
 }
 }

 /**
 * Test of canTeach method, of class Instructor.
 */
 @Test
 public void testCanTeach() {
 String courseCode = "COMP1007";
 boolean expResult = false;
 boolean result = validInstructor.canTeach(courseCode);
 assertEquals(expResult, result);
 }

 /**
 * Test of canTeach method, of class Instructor.
 */
 @Test
 public void testCanTeach2() {
 String courseCode = "COMP1008";
 validInstructor.addTeachableCourse(courseCode);
 boolean expResult = true;
 boolean result = validInstructor.canTeach(courseCode);
 assertEquals(expResult, result);
 }

 /**
 * Test of getHireDate method, of class Instructor.
 */
 @Test
 public void testGetHireDate() {
 LocalDate expResult = LocalDate.of(2015, Month.JANUARY, 1);
 LocalDate result = validInstructor.getHireDate();
 assertEquals(expResult, result);
 }

 /**
 * Test of getEmployeeNum method, of class Instructor.
 */
 @Test
 public void testGetEmployeeNum() {
 int expResult = 2000123;
 int result = validInstructor.getEmployeeNum();
 assertEquals(expResult, result);
 }

 /**
 * Test of getTeachableCourses method, of class Instructor.
 */
 @Test
 public void testGetTeachableCourses() {
 validInstructor.addTeachableCourse("comp1008");
 ArrayList<String> expResult = new ArrayList<>();
 expResult.add("COMP1008");
 ArrayList<String> result = validInstructor.getTeachableCourses();
 assertEquals(expResult, result);
 }

 /**
 * Test of getYearsAtCollege method, of class Instructor.
 */
 @Test
 public void testGetYearsAtCollege() {
 int expResult = 2;
 int result = validInstructor.getYearsAtCollege();
 assertEquals(expResult, result);
 }

 /**
 * Test of setBirthday method, of class Instructor.
 */
 @Test
 public void testSetBirthdayOver100() {
 LocalDate birthday = LocalDate.of(1900, Month.MARCH, 1);
 try
 {
 validInstructor.setBirthday(birthday);
 }
 catch (IllegalArgumentException e)
 {
 System.out.printf("Test set birthday over 100 exception = \"%s\"%n", e.getMessage());
 }
 }

 /**
 * Test of setBirthday method, of class Instructor.
 */
 @Test
 public void testSetBirthdayUnder18() {
 LocalDate birthday = LocalDate.of(2014, Month.MARCH, 1);
 try
 {
 validInstructor.setBirthday(birthday);
 fail("The setBirthday method should have found the Instructor to be too young");
 }
 catch (IllegalArgumentException e)
 {
 System.out.printf("Test set birthday under 18, exception = \"%s\"%n", e.getMessage());
 }

 }

}
[bookmark: _GoBack]}
