/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package assignment1;

import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;

/**
 *
 * @author krupa
 */
public class StudentTest {

 public StudentTest() {
 }

 @BeforeClass
 public static void setUpClass() {
 }

 @AfterClass
 public static void tearDownClass() {
 }

 @Before
 public void setUp() {
 }

 @After
 public void tearDown() {
 }

 @Test
 public void testSomeMethod() {

 }
 public class StudentTest {

 Student validStudent1;

 public StudentTest() {
 }

 @BeforeClass
 public static void setUpClass() {

 }

 @AfterClass
 public static void tearDownClass() {
 }

 @Before
 public void setUp() {
 validStudent1 = new Student("Fred","Flintstone","13 Cobble Way","Bedrock","Dendi","A2A0T3",
 LocalDate.of(2000, Month.SEPTEMBER, 3),"COPA", 1234,
 LocalDate.of(2016, Month.JANUARY, 10));
 }

 @After
 public void tearDown() {
 }

 /**
 * Test of setBirthday method, of class Student.
 */
 @Test
 public void testSetBirthdayValidInput() {
 LocalDate expResult = LocalDate.of(2000, Month.DECEMBER, 10);
 validStudent1.setBirthdate(expResult);
 LocalDate result = validStudent1.getBirthdate();
 assertEquals(expResult, result);
 }

 /**
 * Test of setBirthday method, of class Student.
 */
 @Test
 public void testSetBirthdayInvalidInput() {
 LocalDate invalidBirthdate = LocalDate.of(1000, Month.DECEMBER, 10);
 try{
 validStudent1.setBirthdate(invalidBirthdate);
 fail("The invalid date did not throw an exception");
 }
 catch (IllegalArgumentException e)
 {
 LocalDate expResult = LocalDate.of(2000, Month.SEPTEMBER, 03);
 LocalDate result = validStudent1.getBirthdate();
 assertEquals(expResult, result);
 }
 }

 /**
 * Test of getYearEnrolled method, of class Student.
 */
 @Test
 public void testGetYearEnrolled() {
 int expResult = 2016;
 int result = validStudent1.getYearEnrolled();
 assertEquals(expResult, result);
 }

 /**
 * Test of inGoodStanding method, of class Student.
 */
 @Test
 public void testInGoodStanding() {
 boolean expResult = true;
 boolean result = validStudent1.inGoodStanding();
 assertEquals(expResult, result);
 }

 /**
 * Test of suspendStudent method, of class Student.
 */
 @Test
 public void testSuspendStudent() {
 validStudent1.suspendStudent();
 boolean expResult = false;
 boolean result = validStudent1.inGoodStanding();
 assertEquals(expResult, result);
 }

 /**
 * Test of reinstateStudent method, of class Student.
 */
 @Test
 public void testReinstateStudent() {
 validStudent1.suspendStudent();
 validStudent1.reinstateStudent();
 boolean expResult = true;
 boolean result = validStudent1.inGoodStanding();
 assertEquals(expResult, result);
 }

 /**
 * Test of changeAddress method, of class Student.
 */
 @Test
 public void testChangeAddress() {
 String street = "55 Granite Ridge Road";
 String city = "Bedrock";
 String province = "Dendi";
 String postalCode = "B3B2T2";
 validStudent1.changeAddress(street, city, province, postalCode);
 String expResult = "55 Granite Ridge Road, Bedrock, Dendi, B3B2T2";
 String result = validStudent1.getFullAddress();
 assertEquals(expResult, result);
 }

 /**
 * Test of changeAddress method, of class Student.
 */
 @Test
 public void testChangeAddressInvalidPostalCode() {
 String street = "55 Granite Ridge Road";
 String city = "Bedrock";
 String province = "Dendi";
 String postalCode = "b3b2t2";
 validStudent1.changeAddress(street, city, province, postalCode);
 String expResult = "55 Granite Ridge Road, Bedrock, Dendi, B3B2T2";
 String result = validStudent1.getFullAddress();
 assertEquals(expResult, result);
 }

 /**
 * Test of getAddress method, of class Student.
 */
 @Test
 public void testGetAddress() {
 String expResult = "13 Cobble Way, Bedrock, Dendi, A2A0T3";
 String result = validStudent1.getFullAddress();
 assertEquals(expResult, result);
 }

 /**
 * Test of toString method, of class Student.
 */
 @Test
 public void testToString() {
 String expResult = "Fred Flintstone, student number is 1234";
 String result = validStudent1.toString();
 assertEquals(expResult, result);
 }

 /**
 * Test of getYearsAtCollege method, of class Student.
 */
 @Test
 public void testGetYearsAtCollege() {
 int expResult = 1;
 int result = validStudent1.getYearsAtCollege();
 assertEquals(expResult, result);
 }

 /**
 * Test of setBirthdate method, of class Student.
 */
 @Test
 public void testSetBirthdateValid() {
 LocalDate newBirthdate = LocalDate.of(2000, Month.APRIL, 1);
 validStudent1.setBirthdate(newBirthdate);
 assertEquals(newBirthdate, validStudent1.getBirthdate());
 }

 /**
 * Test of setBirthdate method, of class Student.
 */
 @Test
 public void testSetBirthdateInvalid() {
 LocalDate newBirthdate = LocalDate.of(2016, Month.APRIL, 1);
 try
 {
 validStudent1.setBirthdate(newBirthdate);
 fail("The setBirthday method should have ensured that the student is at least 14");
 }
 catch (IllegalArgumentException e)
 {
 System.out.printf("The setBirthday with too young of an input, exception = \"%s\"%n", e.getMessage());
 }

 }

 /**
 * Test of setBirthdate method, of class Student.
 */
 @Test
 public void testSetBirthdateInvalid2() {
 LocalDate newBirthdate = LocalDate.of(1897, Month.APRIL, 1);
 try
 {
 validStudent1.setBirthdate(newBirthdate);
 fail("The setBirthday method should have ensured that the student is older than 90");
 }
 catch (IllegalArgumentException e)
 {
 System.out.printf("The setBirthday with a birthday too old, exception = \"%s\"%n", e.getMessage());
 }
 }

 /**
 * Test of creating a Student that is not a valid age (too old)
 */
 @Test
 public void testSetBirthdateInvalid3() {

 try
 {
 Student invalidStudent = new Student("Fred","Flintstone","13 Cobble Way","Bedrock","Dendi","A2A0T3",
 LocalDate.of(1900, Month.SEPTEMBER, 3),"COPA", 1234,
 LocalDate.of(2016, Month.MARCH, 10));
 fail("The student constructor should have failed because this one is older than 90");
 }
 catch (IllegalArgumentException e)
 {
 System.out.printf("The constructor caught that the student was too old, exception = \"%s\"%n", e.getMessage());
 }
 }

 /**
 * Test of creating a Student that is not a valid age (too young)
 */
 @Test
 public void testSetBirthdateInvalid4() {

 try
 {
 Student invalidStudent = new Student("Fred","Flintstone","13 Cobble Way","Bedrock","Dendi","A2A0T3",
 LocalDate.of(2014, Month.SEPTEMBER, 3),"COPA", 1234,
 LocalDate.of(2016, Month.MARCH, 10));
 fail("The student constructor should have failed because this one is too young");
 }
 catch (IllegalArgumentException e)
 {
 System.out.printf("The constructor caught that the student was too young, exception = \"%s\"%n", e.getMessage());
 }
 }

 /**
 * Test of creating a Student with an invalid student number
 */
 @Test
 public void testSetBirthdateInvalid5() {

 try
 {
 Student invalidStudent = new Student("Fred","Flintstone","13 Cobble Way","Bedrock","Dendi","A2A0T3",
 LocalDate.of(2000, Month.SEPTEMBER, 3),"COPA", 0,
 LocalDate.of(2016, Month.MARCH, 10));
 fail("The student constructor should have failed because of an invalid student number");
 }
 catch (IllegalArgumentException e)
 {
 System.out.printf("The constructor caught that the student had an invalid student number, exception = \"%s\"%n", e.getMessage());
 }
 }

}

[bookmark: _GoBack]}
