
CSCI	1101	Computer	Science	II	
Assignment	No.	2	

Date	Given:	Friday,	February	10,	2017	
Due:	Monday,	February	27,	2017,	11.55	p.m.	

Submission:	On	Brightspace	
	
Please	follow	all	the	instructions	carefully.	You	must	implement	the	classes	as	specified	in	the	UML	diagram.	You	may	add	
other	methods	if	needed,	however,	all	the	methods	and	the	variables	indicated	in	the	UML	diagram	must	be	implemented.	
You	must	submit	one	zip	file	containing	the	source	codes	(.java	files)	and	a	text	document	with	sample	outputs.	All	your	
programs	must	be	nicely	formatted	and	commented.	
	
Develop	the	code	in	a	step-by-step	manner.	Each	correctly	developed	code	piece	will	get	you	points.		
	
The	objective	of	this	assignment	is	to	simulate	a	game	of	tic	tac	toe.	For	those	of	you	who	are	not	familiar	with	the	game,	
you	can	check	out		the	following	website:	
(http://www.exploratorium.edu/brain_explorer/tictactoe.html).		
Figure	1	below	shows	some	sample	tic	toe	toe	boards	with	some	input.	
	
	

	 	 	 	
Win	(O's	Row)	 Win	(X's	Column)	 Win	(X's	Diagonal)	 No	winner	(Tie)	

Fig.	1	Tic	Tac	Toe	Boards	and	ways	to	win	or	tie	(i.e.,	no	winner)	
	
You	will	be	using	the	concepts	of	inheritance	and	aggregation	in	object-oriented	programming.	You	will	also	need	to	use	
2-d	arrays	to	represent	the	grid	of	the	tic	tac	toe	board.	2-d	arrays	are	similar	to	1-d	arrays	except	that	they	use	two	
indices.	There	is	a	small	tutorial	on	2-d	arrays	at	the	end	of	this	assignment.	Check	it	out.	
	
There	are	three	main	classes	(Board,	TicTacToeBoard,	XO)	and	one	additional	class	called	Play	that	will	use	and	run	the	
classes	(that	is,	play	the	game).		See	the	UML	diagram	below	to	see	how	the	classes	fit	together.	
	

	

	
	
	
	

XO	Class		 	 TicTacToeBoard	Class	
-	name:	String	
-	static	turn:	int	

	 -	board	[]	[]	:	XO	
-	turnCnt	:	int	

+	XO	()	:	
+	get/set	methods	
+	equals	(XO)	:	boolean	
+	toString	()	:	String	

	 +	TicTacToeBoard	(int,	int)	:	
+	get/set	methods	
+	add	(int,	int)	:	boolean	
+	winner	()	:	boolean	
+	toString	()	:	String	
+	other	methods	if	needed	

	
XO	Class	-	this	class	will	hold	information	about	an	"X"	or	an	"O"	object.		
This	class	should	have	two	attributes:	a	name	(which	is	a	String	“X”	or	“O”)	and	a	static	int	variable	that	is	either	set	to	0	
or	1	(it	should	be	initialized	to	1).		You	will	use	this	variable	to	determine	which	name	to	give	the	object	when	it	is	
created	(e.g.,	if	it	is	1,	set	the	name	to	"X").		
	
You	need	to	implement	a	no	args	constructor	that	sets	the	name	of	the	object	to	either	X	or	O	based	on	the	static	variable	
(and	update	the	variable).	You	also	need	to	implement:	

• the	respective	get	and	set	methods	
• an	equals	method	to	see	if	this	XO	object	is	the	same	as	another	XO	object	
• a	toString	method	that	returns	the	name	of	the	XO	object	

	

Board	Class	
-	rows	:	int	
-	cols	:	int	
+	Board	(int	,	int)	:	
+	get/set	methods	

Board	class	–	this	is	a	class	used	to	implement	a	variety	of	different	boards	for	different	games	(e.g.,	a	chess	board,	
checkers	board,	and	in	our	case	a	tic	tac	toe	board).	This	class	has	two	private	attributes:	the	number	of	rows	and	
number	of	columns	of	the	board.	
	
It	also	has	the	following	methods:	

• It	has	a	constructor	that	takes	in	and	initializes	the	rows	and	columns	
• The	appropriate	get/set	methods	

You	may	add	other	methods	if	required.	
	

TicTacToeBoard	
This	class	extends	the	Board	class.	
It	has	two	private	variables:	

• A	2D	array	made	up	of	XO	objects	with	the	size	of	Boards'	rows	and	columns	
• An	int	that	keeps	track	of	how	many	turns	(e.g.,	how	many	X's	and	O's	have	currently	been	placed	on	the	board.)	

	
Methods	

• The	constructor	takes	in	two	ints	representing	the	rows	and	columns.	It	initializes	the	2D	array	to	the	size	of	
rows	and	columns,	and	sets	count	of	turns	to	0.	

• There	are	appropriate	get	and	set	methods	
• It	also	implements.	the	following	methods:		

• The	add	method	will	add	a	new	XO	object	onto	the	board	(add	to	the	2D	array).	The	method	takes	in	two	
numbers	representing	which	row	and	column	you	want	to	add	the	object.	It	returns	a	boolean	if	the	object	
was	successfully	added.	It	will	need	to	make	sure	that	the	passed	in	rows	and	columns	are	within	the	size	
restrictions	of	the	board.	It	will	also	need	to	make	sure	that	the	place	on	the	board	doesn't	already	have	an	
XO	object.		

• The	winner	method	checks	to	see	if	there	is	a	winner	(returns	true	or	false).	The	method	will	need	to	check	
for	wins	by	rows,	columns	and	across	the	diagonals.	See	Fig.	1	for	the	winning	combinations.	

• A	toString	method	that	prints	out	what	the	current	board	looks	like.		The	toString	method	should	print	out	
the	board	similar	to	the	sample	output	(at	the	end	of	the	assignment).	And	as	XOs	are	added	to	the	board,	
these	should	also	be	printed.	

	
You	may	add	other	methods	in	this	class	(e.g.,	to	check	for	the	different	winning	combinations).	
	
Play	class	
This	class	will	allow	users	to	play	the	game	(e.g.,	the	demo	class).	You	will	create	a	new	TicTacToeBoard.	You	should	use	
a	Scanner	object	to	get	the	names	of	your	two	players	and	to	get	the	locations	of	their	respective	X	and	O's	on	the	board.	
The	game	should	continue	until	there	is	a	winner	or	there	is	a	tie	(ie.,	no	more	places	to	put	an	XO).	Make	sure	you	do	
proper	error	checking.	See	below	for	a	sample	output	of	a	game.	Your	output	should	show	the	different	conditions.	
	
----jGRASP	exec:	java	Play	
Player	1	name:	Bob	
Player	2	name:	Sara	
	
Bob	-	you	are	X's	and	you	go	first.	
	
	 	 Col	
	 	 1	 2	 3	
Row	 1	 		 		 		 	
	
	 2	 		 		 		 	
	
	 3	 		 		 		 	
	
Please	input	a	row#	between	1-3	and	column#	between	1-3:	2	2	
	 	 Col	
	 	 1	 2	 3	
Row	 1	 		 		 		 	
	
	 2	 		 X	 		 	
	
	 3	 		 		 		 	
	
Sara	please	input	a	row#	between	1-3	and	column#	between	1-3:	1	1	
	 	 Col	
	 	 1	 2	 3	
Row	 1	 O	 		 		 	
	
	 2	 		 X	 		 	

Bob	please	input	a	row#	between	1-3	and	column#	between	1-3:	1	2	
	 	 Col	
	 	 1	 2	 3	
Row	 1	 O	 X	 		 	
	
	 2	 		 X	 		 	
	
	 3	 		 		 		 	
	
Sara	please	input	a	row#	between	1-3	and	column#	between	1-3:	1	3	
	 	 Col	
	 	 1	 2	 3	
Row	 1	 O	 X	 O	 	
	
	 2	 		 X	 		 	
	
	 3	 		 		 		 	
	
Bob	please	input	a	row#	between	1-3	and	column#	between	1-3:	3	2	
	 	 Col	
	 	 1	 2	 3	
Row	 1	 O	 X	 O	 	
	
	 2	 		 X	 		 	
	
	 3	 		 X	 		 	
	
Bob	you	win!!	
	

	
	 3	 		 	
	
	
	
	
	

Short	Tutorial	on	2-d	arrays	
	
2-d	arrays	are	very	similar	to	1-d	arrays	except	that	they	have	two	subscripts	or	indices,	one	representing	the	row	
number	and	the	other	representing	the	column	number.	
	
For	example,	
int[][] a = new int[5][5];

creates	a	2-d	array	with	5	rows	and	5	columns.	
	
You	can	process	the	2-d	array	in	the	same	manner.	Instead	of	one	for	loop,	we	use	a	nested	for	loop.	For	example,		
	
for(i=0;i<5;i++)
{
 for(j=0;j<5;j++)
 System.out.print(a[i][j] + “\t”);
 System.out.println();
}

will	print	the	contents	of	the	array	as	a	5X5	matrix.	
	
The	boxes	will	be	numbered	as	follows:	
	
	 Column	0	 Column	1	 Column	2	 Column	3	 Column	4	
	
Row	0	 a[0][0]	 	 a[0][1]	 	 a[0][2]	 	 a[0][3]	 	 a[0][4]	
	
Row	1	 a[1][0]	 	 a[1][1]	 	 a[1][2]	 	 a[1][3]	 	 a[1][4]	
	
Row	2	 a[2][0]	 	 a[2][1]	 	 a[2][2]	 	 a[2][3]	 	 a[2][4]	
	
Row	3	 a[3][0]	 	 a[3][1]	 	 a[3][2]	 	 a[3][3]	 	 a[3][4]	
	
Row	4	 a[4][0]	 	 a[4][1]	 	 a[4][2]	 	 a[4][3]	 	 a[4][4]	
	
	
If	you	want	to	print	all	the	elements	in	Column	2,	for	example:	
for(i=0;i<5;i++)
 System.out.println(a[i][2]);

Similarly,	the	following	will	print	the	elements	in	Row	no.3	
for(j=0;j<5;j++)
 System.out.print(a[3][j] + “\t”);
The	following	program	creates	a	2-d	array,	reads	25	integers	from	the	keyboard,	prints	it	as	a	5X5	matrix	and	
finds	the	sum	of	all	elements.	Note	that	the	25	integers	can	be	entered	all	on	a	single	line	when	they	are	read	
from	the	keyboard.	Try	it	out.	
import java.util.Scanner;
public class TwoDArray
{
 public static void main(String[] args)
 {
 int[][] a = new int[5][5];
 int i,j, sum=0;
 Scanner keyboard = new Scanner(System.in);

 for(i=0; i<5;i++)
 for (j=0;j<5; j++)
 a[i][j]= keyboard.nextInt();

 for(i=0;i<5;i++)
 {
 for(j=0;j<5;j++)
 System.out.print(a[i][j] + "\t");
 System.out.println();
 }

 for(i=0;i<5;i++)
 for(j=0;j<5;j++)
 sum+=a[i][j];
 System.out.println("The sum of all elements is: " + sum);
 }

}

Array	initializer	expression	for	2-d	arrays	
	
A	2-d	array	can	be	created	using	an	array	initializer	expression.	For	example:	
	
int[][] numbers = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};
creates	the	following	array	
1 2 3 4
5 6 7 8
9 10 11 12

Length	field	in	a	2-d	array	
A	2-d	array	has	a	length	field	that	holds	the	number	of	rows,	and	each	row	has	a	length	field	that	holds	the	
number	of	columns.	
	
The	following	program	uses	the	length	fields	of	a	2d	array	to	display	the	number	of	rows,	and	the	number	of	
columns	in	each	row.	Try	it	out.	
	
public class Lengths
{
 public static void main(String[] args)
 {
 int[][] numbers = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};
 System.out.println(“The number of rows is “ + numbers.length);
 for(int index=0; index<numbers.length; index++)
 System.out.println(“The number of columns in row ” +
 index + “ is ” + numbers[index].length);
 }
}

	

