## CSC 225 SPRING 2017 <br> ALGORITHMS AND DATA STRUCTURES I <br> ASSIGNMENT 2 <br> UNIVERSITY OF VICTORIA

1. Consider an implementation of a stack using an extendible array. That is, instead of giving up with a "StackFullException" when the stack becomes full, we replace the current array $S$ of size $N$ with a larger one of size $f(N)$ and continue processing the push operations. Suppose that we are given two possible choices to increase the size of the array: (1) $f(N)=N+c$ (for convenience, we start with an initial array of size 0) (2) $f(N)=2 N$ (we start with an initial array of size 1). Compare the two strategies and decide which one is better.

To analyse the two choices, assume the following cost model: A "regular" push operation costs one unit of time. A "special" push operation, when the current stack is full, costs $f(N)+N+1$ units of time. That is, we assume a cost of $f(N)$ units to create the new array, $N$ units of time to copy the $N$ elements and one unit of time to copy the new element.
2. Suppose that we are given an array $A$ with $n$ keys and $k$ inversions. Here, an inversion is defined as a pair of entries that are out of order in the array. What is the running time of Insertion sort when it is used to sort $A$ in Big Oh notation? Why?
3. Develop a $O(n \log n)$ algorithm for computing the number of inversions in a given array.
4. Solve the following recurrence equation to get a closed-formula for $T(n)$. Assume the $n$ is a power of two.

$$
\begin{aligned}
T(n) & =1 \text { if } n=1 \\
& =4 T\left(\frac{n}{2}\right)+n \log n \text { if } n \geq 2
\end{aligned}
$$

5. Suppose we are given a sequence $S$ of $n$ elements, each of which is an integer in the range $\left[0 ; n^{2}-1\right]$. Describe a simple method for sorting $S$ in $O(n)$ time.
