Operating Systems — Assighment 4

Your assignment is to do problem 3.21 from the textbook (copied in the last page of this
document) in C, with the following changes.

e Your program (which is the parent process) will fork two processes to print their
respective sequence for the Collatz conjecture.

e The first child process will produce the sequence which is indicated by the number on the
command line and the second child process will produce the sequence from the command
line number plus 3.

e The number entered on the command line will be an integer between 1 and 35.

e The variable n will hold the number entered in the command line (see the solution to 3.21
posted in module 7). You must increment this variable by 3 (n = n + 3;) in the parent
process — not in a child process. You should not create another variable to hold this new
value (suchasin:m=n+3;).

e The main program (parent process) should print out the value of the argument passed to
each child.

e The children should print the child’s “name” (1 or 2), with each number output, - see
sample output.

e Each process should also print its own process ID (use getpid()) twice: as soon as it starts
and just before it ends execution (see sample output).

e Make sure your program allows the forked processes to run concurrently. If you do the
extra credit (below), you will likely see concurrency illustrated in your ouput.

e You will need to call wai t twice so that the main program finishes after the children (no
cascading termination). The child processes will not always finish in the order in which
they are forked.

Be extremely careful that a child process does not itself fork a process or you can fill the process
table and lock up the machine. Testing of this work must only be done on your own Linux
machine. If you lock up another machine (such as circe or a lab machine) trying this assignment
out, it is a O for this assignment! Make sure you know how to terminate a program that is stuck in
an infinite loop: ctrl+c is one way.

You must upload your source code on Canvas. Name your source code file a4.c, and make sure it
compiles using gcc a4.c on your linux machine. To test your code, we will use gcc a4.c to
compile and ./a.out ## to run, where ## is a number between 1 and 35.

Extra Credit (5 points)
Make the above program work with any number of child processes.

Allow the user to enter the number of child processes (between 2 and 100). You may get this
number as a command line argument or prompt the user as soon as your program starts. Before
forking each child process (except the first), increment n by 3. Each child will print the Collatz
sequence starting at the new n, for example: child 1 starts the sequence from n, child 2 starts
from (n + 3), child 3 starts from (n + 6), child 4 starts from (n + 9)....

Page 1 of 3

Operating Systems — Assighment 4

Sample Output (with 2 children)

oscreader@0SC:~/test$ gcc a4.c
oscreader@0SC:~/test$./a.out 20

Main program®s process I1D: 1921

Parent says:

Parent says:

Child 2 (ID:

(Child
(child
(child
(Cchild
(child
(Cchild
(Cchild
(child
(child
(child
(child
(child
(child
(Child
(child

2)

70
35
106
53
160

About to end

Parent says:

Child 1 (ID:

(Child
(child
(child
(child
(child
(child
(child

10
5
16

PN R_O

About to end

Parent says:

About to end

oscreader@0SC:~/test$

About to fork child, starting value
About to fork child, starting value

1923) Start sequence at: 23

execution (I"m process 1923).
Done waiting for a child.

1922) Start sequence at: 20

execution (I"m process 1922).
Done waiting for a child.

execution (I"m process 1921).

20

23

Page 2 of 3

Operating Systems — Assignment 4

3.21 The Collatz conjecture concerns what happens when we take any
positive integer 1 and apply the following algorithm:

) ny2, if nis even

| 3xn+1, ifnisodd
The conjecture states that when this algorithm is continually applied,
all positive integers will eventually reach 1. For example, if n = 35, the
sequence is

35, 106, 53, 160, 80, 40, 20, 10, 5,16, §, 4,2, 1

Write a C program using the fork() system call that generates this
sequence in the child process. The starting number will be provided
from the command line. For example, if 8 is passed as a parameter on
the command line, the child process will output 8,4, 2, 1. Because the
parent and child processes have their own copies of the data, it will be
necessary for the child to output the sequence. Have the parent invoke
the wait () call to wait for the child process to complete before exiting
the program. Perform necessary error checking to ensure that a positive
integer is passed on the command line|

Page 3 of 3

