
COSC 2336 Programming Fundamentals III

Professor R. Garrett COSC 2336 Programming Fundamentals III Page 1

Lab 5 - Exercisesi

Figure 5-1 Linked List for Exercises 2 & 4

Chapter 5-2.What is the output of each of the following C++ statements?

a. cout << list->info;

b. cout << A->info;

c. cout << B->link->info;

d. cout << list->link->link->info

Chapter 5-4. Mark each of the following statements as valid or invalid. If a statement is invalid, explain

why.

a. A = B;

b. list->link = A->link;

c. list->link->info = 45;

d. *list = B;

e. *A = *B;

f. B = A->link->info;

g. A->info = B->info;

h. list = B->link->link;

i. B = B->link->link->link;

COSC 2336 Programming Fundamentals III

Professor R. Garrett COSC 2336 Programming Fundamentals III Page 2

Chapter 5-14. What is the output of the following program segment?

list<int> intList;

ostream_iterator<int> screen(cout, " ");

list<int>::iterator listIt;

intList.push_back(5);

intList.push_front(23);

intList.push_front(45);

intList.pop_back();

intList.push_back(35);

intList.push_front(0);

intList.push_back(50);

intList.push_front(34);

copy(intList.begin(), intList.end(), screen);

cout << endl;

listIt = intList.begin();

intList.insert(listIt,76);

++listIt;

++listIt;

intList.insert(listIt,38);

intList.pop_back();

++listIt;

++listIt;

intList.erase(listIt);

intList.push_front(2 * intList.back());

intList.push_back(3 * intList.front());

copy(intList.begin(), intList.end(), screen);

cout << endl;

COSC 2336 Programming Fundamentals III

Professor R. Garrett COSC 2336 Programming Fundamentals III Page 3

Lab 5 - Programming Exercisesi

Chapter 5-6.

a. Add the following operation to the class orderedLinkedList:

void mergeLists(orderedLinkedList<Type> &list1,

 orderedLinkedList<Type> &list2);

// This function creates a new list by merging the

// elements of list1 and list2.

// Postcondition: first points to the merged list; list1

// and list2 are empty

Example: Consider the following statements:

orderedLinkedList<int> newList;

orderedLinkedList<int> list1;

orderedLinkedList<int> list2;

Suppose list1 points to the list with the elements 2 6 7 and list2 points to the list with the

elements 3 5 8. The statement: newList.mergeLists(list1, list2); creates a new linked

list with the elements in the order 2 3 5 6 7 8 and the object newList points to this list. Also,

after the preceding statement executes, list1 and list2 are empty.

Implementation Notes: No additional memory is required when creating the merged list. The

correct solution should perform the following tasks:

1. Create a pointer to the merged list (newList)

2. Compare the first element in list1 and list2

3. Insert the smaller of the 2 elements into the merged list through pointer manipulation.

4. Advance the “first” pointer of the list containing the smaller element.

a. The size of the list containing the smaller element is reduced by 1.

5. Repeat the process until one of the lists is empty.

6. The elements in the remaining list should then be added to the end of the merged list.

7. Don’t forget to update the “count” variable in each list after removing an element from

that list.

8. After the elements in both lists have been added to the merged list simply set the “first”

and “last” pointers in each list to NULL to indicate the lists are empty. This does not result

in a memory leak because the elements in each list were added to the merged list through

pointer manipulation.

COSC 2336 Programming Fundamentals III

Professor R. Garrett COSC 2336 Programming Fundamentals III Page 4

Modify the file orderedLinkedList.h and add your changes at the end of the

orderedLinkedList class definition. The file linkedList.h required by the file

orderedLinkedList.h has been provided as well.

b. Write the definition of the function template mergeLists to implement the operation

mergeLists. Modify the class orderedLinkedList in the file orderedLinkedList.h

and add your function definition at the end of the file. Then use the test program lab5-6.cpp to test

your program. Use the input data (if any) shown in the output window on the following pages and

then compare your results with the expected results.

Expected Program Input and Output

i Exercises and Programming Exercises were extracted from the adopted course textbook, Data Structures Using

C++, Second Edition, D.S. Malik, 2010 Course Technology, Cengage Learning for the purpose of annotating each

exercise with Professor specific instructions (when necessary) that facilitate student completion.

