
The Memory Manager Project

2

Objectives

• The goal of your next project is to simulate the C heap
manager

• A runtime module used to allocate and de-allocate
dynamic memory.

• The "heap" is a large "pool" of memory set aside by the
runtime system

• The two main functions are

– malloc, used to satisfy a request for a specific number of
consecutive blocks;

– free, used to make allocated blocks available f

3

Description

• Our simulation uses

– a large block of unsigned chars as our memory pool; and

– a doubly-linked list to keep track of allocated and available
blocks of unsigned char.

– We will refer to the nodes of this list as blocknodes

• The info field of each node is of type blockdata

• An object of type blockdata has attributes

– blocksize number of bytes in the block

– free a Boolean flag indicating the status of a block

– blockptr a pointer to the first byte of the block

4

malloc

• The malloc algorithm has an int parameter request

• request is the size of the block to be allocated

• request scans the list until it finds the first blocknode B
such that

– B.free == true

– B.size ≥ request

• If no such block is found, malloc returns NULL (0)

5

malloc

• If B.size is larger than request, the block is broken up
into two blocks

– The first block's size: request

– The second's size: B.size-request

• This requires that we insert a new blocknode C after B to
reference the second block (which is free)

• Then, whether we split the block or not, we

– set B.free to false

– set B.size to request

– return the address B.bptr

6

free

• To implement free(unsigned char *p) we must find
the blocknode whose bptr field equals p

• This is done by traversing the blocknode list

• If this fails, we terminate the program

• Otherwise we change the blocknode's free field to true

• But we don't stop there

7

Merging Consecutive free Blocks

• It should be clear that we want to maximize the size of the
free blocks

• This means there should never be consecutive free blocks

• Whenever consecutive free blocks occur, they should be
merged

• When we free a block, we need to check the previous and
next blocks to see if they are free

• If so, we must merge the blocks into one big block

• This may involve the deletion of one or two blocknodes from
our list

8

Doubly-Linked List Utilities

• To manage doubly-linked lists, we will use a collection of
templated functions

• We will not need the apparatus of a class here, a struct
suffices

• The definition of dlNode and associated functions will be
supplied in the file dlListUtils.h

• We will take the approach used in the text for doubly-linked
lists

• Namely, we will use dummy header and trailer nodes

• This simplifies the code for many list operations

9

Project Files

• The files used in this project are

• dlListUtils.h

• blockdata.h

• blockdata.cpp

• MemoryManager.h

• MemoryManager.cpp

• testMemMgr.cpp

Do not modify, do not submit

Complete and submit

Modify and use for testing;
Do not submit

Source Code

11

dlUtils.h

#include <iostream>
#include <cassert>

template <class T>

struct dlNode {

T info;

dlNode<T> *prev;

dlNode<T> *next;

dlNode<T>(T val, dlNode<T> *p,
dlNode<T> *n)

:info(val),prev(p),next(n){};

};

12

template <class T>

void insertAfter(dlNode<T> *trailer,
dlNode<T> *current, T newval)

{

assert(current != trailer);

current->next =
new dlNode<T>(newval,current,current->next);

current = current->next;

current->next->prev = current;

}

dlUtils.h

prev next

13

template <class T>
void printDlList(dlNode<T>* header,

dlNode<T> *trailer,
const char *sep)

{
assert(header != NULL && trailer != NULL);
dlNode<T> *cursor = header->next;

while(cursor->next != trailer) {
std::cout << cursor->info << sep;
cursor = cursor->next;

}

if (cursor->next = trailer)
std::cout << cursor->info << std::endl;

}

dlUtils.h

14

template <class T>

void deleteNode(dlNode<T>* header,
dlNode<T>* trailer,
dlNode<T>* current)

{

assert(current!= header &&
current != trailer);

dlNode<T> *hold = current;

current->prev->next = current->next;
current->next->prev = current->prev;

delete hold;
}

dlUtils.h

15

template <class T>
void deleteNext(dlNode<T>* header,

dlNode<T>* trailer,
dlNode<T> *current)

{

assert(current != trailer &&
current->next != trailer);

deleteNode(header,trailer, current->next);

}

dlUtils.h

16

template <class T>
void deletePrevious(dlNode<T> * header,

dlNode<T> * trailer,
dlNode<T> *current)

{

assert(current != header &&
current->prev != header);

deleteNode(header, trailer,current->prev);

}

dlUtils.h

17

template <class T>
void clearList(dlNode<T> *p)
{

dlNode<T> *hold = p;

while(p != NULL) {
p = p->next;
delete hold;
hold = p;

}
}

dlUtils.h

18

The blockdata Definition

// blockdata.h
#include <iostream>
class blockdata {
friend ostream& operator<<(ostream&

const blockdata &);
public:
blockdata(unsigned int s, bool f,

unsigned char *p);
int blocksize;
bool free;
unsigned char *blockptr;

};

19

The blockdata Implementation

// blockdata.cpp
#include "dlUtils.h"
#include "blockdata.h"
#include <iostream>
using namespace std;
blockdata::blockdata(unsigned int s, bool f,

unsigned char *p)
{

blocksize = s;
free = f;
blockptr = p;

}

20

The blockdata Implementation

// blockdata.cpp
ostream &operator << (ostream &out, const
blockdata &B)
{

out << "[" << B.blocksize << ",";
if (B.free)

out << "free";
else

out << "allocated";
out << "]";
return out;

}

21

The MemoryManager Definition

class MemoryManager

{

public:

MemoryManager(unsigned int memsize);

~MemoryManager();

unsigned char *
malloc(unsigned int request);

void free(unsigned char * ptr2block);

void showBlockList();

22

private:

unsigned int memsize;

unsigned char *baseptr;

dlNode<blockdata>* header;

dlNode<blockdata>* trailer;

void mergeForward(dlNode<blockdata> *p);

void mergeBackward(dlNode<blockdata> *p);

void splitBlock(dlNode<blockdata> *p,
unsigned int chunksize);

};

The MemoryManager Definition

23

The MemoryManager Implementation

MemoryManager::MemoryManager(unsigned int memtotal)
: memsize(memtotal)

{
baseptr = new unsigned char[memsize];

blockdata dummyBlock(0,false,0);
blockdata originalBlock(memsize,true,baseptr);
header = new

dlNode<blockdata>(dummyBlock,nullptr,nullptr);

trailer = new
dlNode<blockdata>(dummyBlock,nullptr,nullptr);

header->next = new
dlNode<blockdata>(originalBlock,header,trailer);

trailer->prev = header->next;

}

24

The MemoryManager Implementation (partial)

void MemoryManager::showBlockList()
{

printDlList(firstBlock,"->");
}

25

The MemoryManager Implementation (partial)

void
MemoryManager::mergeForward(dlNode<blockdata> *p)

{ // Put your code here }

void
MemoryManager::mergeBackward(dlNode<blockdata> *p)

{ // Put your code here }

void
MemoryManager::free(unsigned char *ptr2block)

{ // Put your code here }

26

The MemoryManager Implementation (partial)

void
MemoryManager::splitBlock(dlNode<blockdata> *p,

unsigned int chunksize)
{ // Put your code here }

unsigned char *
MemoryManager::malloc(unsigned int request)
{ // Put your code here }

Visual Trace of Operations

28

The MemoryManager Constructor

MemoryManager M(2048);

0

f a ls e

0

p r e v n e x tb s iz e b p t r

f r e e

h e a d e r

t ra ile r

b a s e p t r

m e m s iz e 2 0 4 8

0

f a ls e

0

p r e v n e x tb s iz e b p t r

f r e e

h e a d e r t ra ile r

2 0 4 8

tr u e

p r e v n e x tb s iz e b p t r

f re e
0 0

Me m ory Po ol

prev bs iz e bptr next pre v bsize bp tr ne xt

20

1 5

q

true true

splitBlock(q,20);

pre v bsize bp tr ne xt

35

true

Me m ory Po ol

q splitBlock Example

unsigned char *p1 = M.malloc(10);

0

f a ls e

0

p r e v n e x tb s iz e b p t r

f r e e

h e a d e r

t ra ile r

b a s e p t r

m e m s iz e 2 0 4 8

0

f a ls e

0

p r e v n e x tb s iz e b p t r

f r e e

h e a d e r t ra ile r

2 0 4 8

tr u e

p r e v n e x tb s iz e b p t r

f re e
0 0

0

fa ls e

0

p re v n e x tb s iz e b p t r

f r e e

h e a d e r

tr a il e r

b a s e p t r

m e m s i z e 2 0 4 8

2 0 3 8

f a ls e

p r e v n e x tb s iz e b p t r

f r e e

h e a d e r

1 0

t ru e

p r e v n e x tb s iz e b p t r

f r e e
0

0

fa ls e

0

p re v n e x tb s iz e b p t r

f re e

t r a il e r

0

f irstBlock

memsize

baseptr

2048

0
10

prev bsize bptr next

Memory PoolM

prev bsize bptr next

false true
0

prev bsize bptr next

20 2018

false

unsigned char *p2 = M.malloc(20);

f irstBlock

memsize

baseptr

2048

0
10

prev bsize bptr next

Memory PoolM

2038

true
0

prev bsize bptr next

false

to
header

to
trailer

f irs tB loc k

m em size

b asep tr

2048

0
1 0

pre v bsize bp tr ne xt

Me m ory Po olM

prev bs iz e bptr next

true

pre v bsize bp tr ne xt

20

fa ls e
0

prev bs iz e bptr next

true

1 5

false

2003

p1 = M.malloc(15);

f irs tB loc k

m em size

b asep tr

2048

0
1 0

pre v bsize bp tr ne xt

Me m ory Po olM

prev bs iz e bptr next

true

pre v bsize bp tr ne xt

20

fa ls e
0

prev bs iz e bptr next

true

1 5

false

2003

Block allocated to p1
When free is called on p1, we must
merge the resulting consecutive free
blocks to one

M.free(p1);

f irstBlock

memsize

baseptr

2048

0
10

prev bsize bptr next

Memory PoolM

prev bsize bptr next

true

prev bsize bptr next

20

false

2033

true

2018

Testing Code

35

#include <iostream>
#include <cassert>
#include "MemoryManager.h"

const char * startlist =
"\n---------BlockList start--------------\n"

const char * endlist =
"\n---------BlockList end-------------\n"

int main()
{

MemoryManager heaper(2048);
cout << "heap initialized\n";

cout << startlist;
cout << heaper << endl;
cout << endlist;

36

cout << "Doing first malloc:\n";
unsigned char * p1 = heaper.malloc(10);
cout << "malloc done\n";

cout << startlist;
cout << heaper << endl;
cout << endlist;

cout << "On to the second malloc\n";
unsigned char *p2 = heaper.malloc(20);
cout << "malloc done\n";

cout << startlist;
cout << heaper << endl;
cout << endlist;

37

cout << "Next free the first pointer\n";
heaper.free(p1);

cout << startlist;
cout << heaper << endl;
cout << endlist;

cout << "Now do a malloc for a block too big for "
<< "the initial open block\n";

p1 = heaper.malloc(15);
cout << "malloc done\n";

cout << startlist;
cout << heaper << endl; n\n";
cout << endlist;

38

cout << "Next free the most recently "
<< "allocated pointer\n";

heaper.free(p1);

cout << startlist;
cout << heaper << endl;
cout << endlist;

cout << "Next free the middle pointer\n";
heaper.free(p2);

cout << startlist;
cout << heaper << endl;
cout << endlist;

return 0;
}

Test Output

40

heap initialized

-------------BlockList start------------------
[2048,free]
-------------BlockList end------------------

Executing p1 = malloc(10):
malloc done

-------------BlockList start------------------
[10,allocated] -> [2038,free]
-------------BlockList end------------------

Executing p2 = malloc(20):
malloc done

-------------BlockList start------------------
[10,allocated] -> [20,allocated] -> [2018,free]
-------------BlockList end------------------

41

Executing free(p1):

-------------BlockList start------------------
[10,free] -> [20,allocated] -> [2018,free]
-------------BlockList end------------------

malloc for a block too big for the initial open block
Executing p1 = malloc(15)
malloc done

-------------BlockList start------------------
[10,free] -> [20,allocated] -> [15,allocated] ->
[2003,free]
-------------BlockList end------------------

42

Next free the most recently allocated pointer (p1)

-------------BlockList start------------------
[10,free] -> [20,allocated] -> [2018,free]
-------------BlockList end------------------

Next free p2

-------------BlockList start------------------
[2048,free]
-------------BlockList end------------------

	The Memory Manager Project
	Objectives
	Description
	malloc
	malloc
	free
	Merging Consecutive free Blocks
	Doubly-Linked List Utilities
	Project Files
	Source Code
	dlUtils.h
	dlUtils.h
	dlUtils.h
	dlUtils.h
	dlUtils.h
	dlUtils.h
	dlUtils.h
	The blockdata Definition
	The blockdata Implementation
	The blockdata Implementation
	The MemoryManager Definition
	The MemoryManager Definition
	The MemoryManager Implementation
	The MemoryManager Implementation (partial)
	The MemoryManager Implementation (partial)
	The MemoryManager Implementation (partial)
	Visual Trace of Operations
	The MemoryManager Constructor
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Testing Code
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Test Output
	Slide Number 40
	Slide Number 41
	Slide Number 42

