The Memory Manager Project

i

—

I
i

Objectives

The goal of your next project is to simulate the C heap
manager

A runtime module used to allocate and de-allocate
dynamic memory.

The "heap" is a large "pool" of memory set aside by the
runtime system

The two main functions are

— malloc, used to satisfy a request for a specific number of
consecutive blocks;

— free, used to make allocated blocks available f

Description

e QOur simulation uses
— a large block of unsigned chars as our memory pool; and

— a doubly-linked list to keep track of allocated and available
blocks of unsigned char.

— We will refer to the nodes of this list as blocknodes
* The Info field of each node is of type blockdata
* An object of type blockdata has attributes
— blocksize number of bytes in the block
— free a Boolean flag indicating the status of a block

— blockptr a pointer to the first byte of the block

malloc

« The malloc algorithm has an 1nt parameter request
e request is the size of the block to be allocated

e request scans the list until it finds the first blocknode B
such that

— B.free == true

— B.si1ze > request

* If no such block is found, malloc returns NULL (0O)

mal loc

If B.s1ze is larger than request, the block is broken up
Into two blocks

— The first block's size: request

— The second's size: B.si1ze-request

This requires that we insert a new blocknode C after B to
reference the second block (which is free)

Then, whether we split the block or not, we
— set B.free to false
— set B.si1ze to request

— return the address B.bptr

free
 Toimplement free(unsigned char *p) we must find
the blocknode whose bptr field equals p

e This is done by traversing the blocknode list

 If this fails, we terminate the program

« Otherwise we change the blocknode's free field to true

 But we don't stop there

Merging Consecutive free Blocks

It should be clear that we want to maximize the size of the
free blocks

This means there should never be consecutive free blocks

Whenever consecutive free blocks occur, they should be
merged

When we free a block, we need to check the previous and
next blocks to see if they are free

If so, we must merge the blocks into one big block

This may involve the deletion of one or two blocknodes from
our list

Doubly-Linked List Utilities

To manage doubly-linked lists, we will use a collection of
templated functions

We will not need the apparatus of a class here, a struct
suffices

The definition of dINode and associated functions will be
supplied in the file dliListUtils.h

We will take the approach used in the text for doubly-linked
lists

Namely, we will use dummy header and trailer nodes

This simplifies the code for many list operations

Project Files

* The files used in this project are

diListUtils.h
blockdata.h
blockdata.cpp

MemoryManager .h

MemoryManager .cpp

testMemMgr.cpp

Do not modify, do not submit

Complete and submit

Modify and use for testing;
Do not submit

Source Code

diutils.h

#include <rostream>
#include <cassert>

template <class T>
struct dINode {
T 1nfo;
dINode<T> *prev;
dINode<T> *next;

dINode<T>(T val, dINode<T> *p,
dINode<T> *n)

-info(val),prev(p),next(n){};

11

diutils.h

template <class T>

void InsertAfter(dINode<T> *trailer,
dINode<T> *current, T newval)

{
assert(current = trailer);

current->next = prev next
new dINode<T>(newval,current,current->next);

current = current->next;

current->next->prev = current;

12

diutils.h

template <class T>

void printDIList(dINode<T>* header,
dINode<T> *trailer,
const char *sep)

assert(header = NULL && trailer !'= NULL);
dINode<T> *cursor = header->next;

while(cursor->next !'= trailer) {
std::cout << cursor->Info << sep;
CUrsor = cursor->next;

}

IT (cursor->next = trailer)
std: :cout << cursor->Info << std::endl;

13

diutils.h

template <class T>

void deleteNode(dINode<T>* header,
dINode<T>* trailer,
dINode<T>* current)

assert(current!= header &&
current != trailer);

dINode<T> *hold = current;

current->prev->next = current->next;
current->next->prev = current->prev;

delete hold;

14

diutils.h

template <class T>

voild deleteNext(dINode<T>* header,
dINode<T>* trailer,
dINode<T> *current)

assert(current = trailer &&
current->next = trailer);

deleteNode(header,trailer, current->next);

15

diutils.h

template <class T>

voild deletePrevious(dINode<T> * header,
dINode<T> * trailer,
dINode<T> *current)

assert(current !'= header &&
current->prev != header);

deleteNode(header, trailer,current->prev);

16

diutils.h

template <class T>
void clearList(dINode<T> *p)

{
dINode<T> *hold = p;

while(p '= NULL) {
P = p->nhext;
delete hold;
hold = p;
¥
¥

17

The blockdata Definition

// blockdata.h
#i1nclude <i1ostream>
class blockdata {

friend ostream& operator<<(ostream&
const blockdata &);

public:

blockdata(unsigned int s, bool T,
unsigned char *p);

int blocksize;
bool free;
unsigned char *blockptr;

}

18

The blockdata Implementation

// blockdata.cpp
#1nclude "dliutils._h"
#i1nclude "blockdata.h"
#i1nclude <irostream>

using namespace std;

blockdata: :blockdata(unsigned int s, bool T,
unsigned char *p)

{

blocksize = s;

free = T;

blockptr = p;
}

19

The blockdata Implementation

// blockdata.cpp

ostream &operator << (ostream &out, const
blockdata &B)

{

out << "[" << B.blocksize << ",";
1T (B.free)
out << "free'';

else
out << "allocated";
Out << ll]ll;

return out;

}

20

The MemoryManager Definition

class MemoryManager

{
public:
MemoryManager (unsigned 1nt memsize);
~MemoryManager () ;

unsigned char *
malloc(unsigned Int request);

void free(unsigned char * ptr2block);
void showBlockList();

21

The MemoryManager Definition

private:
unsigned Int memsize;
unsigned char *baseptr;
dINode<blockdata>* header;
dINode<blockdata>* trailer;

void mergeForward(dINode<blockdata> *p);
void mergeBackward(dINode<blockdata> *p);

void splitBlock(dINode<blockdata> *p,
unsigned Int chunksize);

The MemoryManager Implementation

MemoryManager : :MemoryManager(unsigned int memtotal)
: memsize(memtotal)

1

baseptr = new unsigned char[memsize];

blockdata dummyBlock(O,false,0);

blockdata originalBlock(memsize, true,baseptr);

header = new
dINode<blockdata>(dummyBlock,nullptr,nullptr);

trailer = new
dINode<blockdata>(dummyBlock,nullptr,nullptr);

header->next = new
dINode<blockdata>(originalBlock,header,trailer);

trailer->prev = header->next;

23

The MemoryManager Implementation (partial)

void MemoryManager: :showBlockList()

{
printDIList(firstBlock,"->");

}

24

The MemoryManager Implementation (partial)

void
MemoryManager : :mergeForward(dINode<blockdata> *p)

{ // Put your code here }

void
MemoryManager : :mergeBackward(dINode<blockdata> *p)

{ // Put your code here }

void
MemoryManager: : free(unsigned char *ptr2block)

{ // Put your code here }

25

The MemoryManager Implementation (partial)

void
MemoryManager: :splitBlock(dINode<blockdata> *p,

unsigned 1Int chunksize)
{ // Put your code here }

unsigned char *
MemoryManager: :malloc(unsigned iInt request)
{ // Put your code here }

26

Visual Trace of Operations

The MemoryManager Constructor

MemoryManager M({(2048);

header trailer
P bsize bptr | nex bsi bptr| nex prev bsize bptr | nex
0 — 2048 —> 0
0 0 0
fre free fre
false true false
L/
header
trailer
baseptr —_—
memsize 2048

28

splitBlock Example

prevv bsize bptr next

— 35 —
“ true R
Memory Pool
splitBlock(qg,20);
q

prev bsize ~ Dbptr next prev bsize bptr next
— 20 —1>
<+ <

B true true
/ y

15 e

Memory Pool

header trailer
prev bsize bptr | next prev bsize bptr| next prev bsize bptr | next
0 — 2048 > 0
0 0 0 0
free free free
false < true false
/
header
trailer
baseptr
memsize 2048
i *pl = M i1 10);
unsigned char *pl = M.malloc ;
header trailer
prev bsize bptr next prev bsize bptr| next prev bsize bptr] nex prev bsize bptr Inext
0 —_> 10 > 2038 > 0
0 0 0 0
free free free free
false < true < false —
L false
Z
header
trailer
baseptr »
memsize 2048

prev bsize bptr next prev bsize bptr next

to 10 — 2038 to

header © T o - [b > trailer
1

|1

Memory P ool

unsigned char *p2 = M.malloc(20);

prev bsize bptr next prev bsize bptr next prev bsize bptr next

10 — 20 S 2018
< <« 1 .
false | false / true //
I
firstBlock |
memsize 2048
baseptr >

M Memory P ool

pl = M.malloc(15);
prev bsize bptr next prev bsize bptr next prev bsize bptr next prev bsize bptr next
10 —1—> 20 —1T—> 15 ——Dl 2003
Gt —
< 1 <«
true false false L/ true
: , / / yd
firstBlock I
memsize 2048
baseptr >
M Memory Pool

When free is called on p1, we must
Block allocated to p1 merge the resulting consecutive free
blocks to one

prev bsize bptr next prev bsize bptr next T prev bsize bptr next prev bsize bptr next

-l 10 ——rl 20 -1 15 ——> 2003 1,
true | T false ‘/ “T fals;// T true///
!
firstBlock |
memsize 2048
baseptr >
M Memory Pool

M.free(pl);

prev bsize bptr next prev bsize bptr next prev bsize bptr next

10 __.l 20 —> 2018
Gt B
-« -«
T true | false / true //
firstBlock |
memsize 2048
baseptr >

M Memoty P ool

Testing Code

#1nclude <rostream>
#i1nclude <cassert>
#include "MemoryManager.h"

const

const

char * startlist =

"\N-———————- BlockList start---——————-——-
char * endlist =
"\N-———————- BlockList end-————————————

int main()

1

MemoryManager heaper(2048);

cout

cout
cout
cout

<<

<<
<<
<<

"heap 1nitialized\n";

startlist;
heaper << endl;
endlist;

35

cout << "Doing first malloc:\n";
unsigned char * pl = heaper.malloc(10);
cout << "malloc done\n";

cout << startlist;
cout << heaper << endl;
cout << endlist;

cout << ""On to the second malloc\n";
unsigned char *p2 = heaper.malloc(20);
cout << "malloc done\n";

cout << startlist;
cout << heaper << endl;
cout << endlist;

cout << ""Next free the first pointer\n'';
heaper.free(pl);

cout << startlist;

cout << heaper << endl;

cout << endlist;

cout << "Now do a malloc for a block too big for ™
<< "the 1nitial open block\n";

pl = heaper.malloc(15);

cout << "malloc done\n";

cout << startlist;

cout << heaper << endl; n\n";
cout << endlist;

37

cout << ""Next free the most recently "
<< "allocated pointer\n';
heaper.free(pl);

cout << startlist;
cout << heaper << endl;
cout << endlist;

cout << "Next free the middle pointer\n';
heaper.free(p2);

cout << startlist;
cout << heaper << endl;
cout << endlist;

return O;

38

Test Output

heap 1nitialized

Executing pl = malloc(10):
malloc done

[10,allocated] -> [2038,free]

————————————— BlockList end-—-————-

Executing p2 = malloc(20):
malloc done

[10,allocated] -> [20,allocated]

————————————— BlockList end-—-————-

40

Executing free(pl):
[10,free] -> [20,allocated] -> [2018,free]
————————————— BlockList end-————--—-—--————————-

malloc for a block too big for the initial open block
Executing pl = malloc(15)
malloc done

[10,free] -> [20,allocated] -> [15,allocated] ->
[2003, free]

41

Next free the most recently allocated pointer (pl)

[10,free] -> [20,allocated] -> [2018,free]
————————————— BlockList end-————--—-—--————————-

42

	The Memory Manager Project
	Objectives
	Description
	malloc
	malloc
	free
	Merging Consecutive free Blocks
	Doubly-Linked List Utilities
	Project Files
	Source Code
	dlUtils.h
	dlUtils.h
	dlUtils.h
	dlUtils.h
	dlUtils.h
	dlUtils.h
	dlUtils.h
	The blockdata Definition
	The blockdata Implementation
	The blockdata Implementation
	The MemoryManager Definition
	The MemoryManager Definition
	The MemoryManager Implementation
	The MemoryManager Implementation (partial)
	The MemoryManager Implementation (partial)
	The MemoryManager Implementation (partial)
	Visual Trace of Operations
	The MemoryManager Constructor
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Testing Code
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Test Output
	Slide Number 40
	Slide Number 41
	Slide Number 42

