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Objectives

• The goal of your next project is to simulate the C heap 
manager 

• A runtime module used to allocate and de-allocate 
dynamic memory.

• The "heap" is a large "pool" of memory set aside by the 
runtime system

• The two main functions are 

– malloc, used to satisfy a request for a specific number of 
consecutive blocks;

– free, used to make allocated blocks available f
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Description

• Our simulation uses 

– a large block of unsigned chars as our memory pool; and 

– a doubly-linked list to keep track of allocated and available 
blocks of unsigned char. 

– We will refer to the nodes of this list as blocknodes

• The info field of each node is of type blockdata

• An object of type blockdata has attributes

– blocksize number of bytes in the block

– free a Boolean flag indicating the status of a block 

– blockptr a pointer to the first byte of the block
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malloc

• The malloc algorithm has an int parameter request

• request is the size of the block to be allocated

• request scans the list until it finds the first blocknode B
such that

– B.free == true

– B.size ≥ request

• If no such block is found, malloc returns NULL (0)
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malloc

• If B.size is larger than request, the block is broken up 
into two blocks

– The first block's size: request

– The second's size:  B.size-request

• This requires that we insert a new blocknode C after B to 
reference the second block (which is free)

• Then, whether we split the block or not, we

– set B.free to false

– set B.size to request

– return the address B.bptr
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free

• To implement free(unsigned char *p) we must find 
the blocknode whose bptr field equals p

• This is done by traversing the blocknode list

• If this fails, we terminate the program

• Otherwise we change the blocknode's free field to true

• But we don't stop there
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Merging Consecutive free Blocks

• It should be clear that we want to maximize the size of the 
free blocks

• This means there should never be consecutive free blocks

• Whenever consecutive free blocks occur, they should be 
merged

• When we free a block, we need to check the previous and 
next blocks to see if they are free

• If so, we must merge the blocks into one big block

• This may involve the deletion of one or two blocknodes from 
our list
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Doubly-Linked List Utilities

• To manage doubly-linked lists, we will use a collection of 
templated functions

• We will not need the apparatus of a class here, a struct
suffices

• The definition of dlNode and associated functions will be 
supplied in the file dlListUtils.h

• We will take the approach used in the text for doubly-linked 
lists

• Namely, we will use dummy header and trailer nodes

• This simplifies the code for many list operations
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Project Files

• The files used in this project are

• dlListUtils.h

• blockdata.h

• blockdata.cpp

• MemoryManager.h

• MemoryManager.cpp

• testMemMgr.cpp

Do not modify, do not submit

Complete and submit

Modify and use for testing;
Do not submit



Source Code
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dlUtils.h

#include <iostream>
#include <cassert>

template <class T>

struct dlNode {

T info;

dlNode<T> *prev;

dlNode<T> *next;

dlNode<T>(T val, dlNode<T> *p, 
dlNode<T> *n)

:info(val),prev(p),next(n){};

};
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template <class T>

void insertAfter(dlNode<T> *trailer, 
dlNode<T> *current, T newval)

{

assert(current != trailer);

current->next = 
new dlNode<T>(newval,current,current->next);

current = current->next;

current->next->prev = current;

}

dlUtils.h

prev next



13

template <class T>
void printDlList(dlNode<T>* header,

dlNode<T> *trailer,
const char *sep)

{
assert(header != NULL && trailer != NULL);
dlNode<T> *cursor = header->next;

while(cursor->next != trailer) {
std::cout << cursor->info << sep;
cursor = cursor->next;

}

if (cursor->next = trailer)
std::cout << cursor->info << std::endl;

}

dlUtils.h
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template <class T>

void deleteNode(dlNode<T>* header, 
dlNode<T>* trailer,
dlNode<T>* current)

{

assert(current!= header && 
current != trailer);

dlNode<T> *hold = current;

current->prev->next = current->next;
current->next->prev = current->prev;

delete hold;
}

dlUtils.h
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template <class T>
void deleteNext(dlNode<T>* header, 

dlNode<T>* trailer,
dlNode<T> *current)

{

assert(current != trailer && 
current->next != trailer);

deleteNode(header,trailer, current->next);

}

dlUtils.h
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template <class T>
void deletePrevious(dlNode<T> * header,

dlNode<T> * trailer,
dlNode<T> *current)

{

assert(current != header && 
current->prev != header);

deleteNode(header, trailer,current->prev);

}

dlUtils.h
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template <class T>
void clearList(dlNode<T> *p)
{

dlNode<T> *hold = p;

while(p != NULL) {
p = p->next;
delete hold;
hold = p;

}
}

dlUtils.h
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The blockdata Definition

// blockdata.h
#include <iostream>
class blockdata {
friend ostream& operator<<(ostream&

const blockdata &);
public:
blockdata(unsigned int s, bool f, 

unsigned char *p);
int blocksize;
bool free;
unsigned char *blockptr;

};
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The blockdata Implementation

// blockdata.cpp
#include "dlUtils.h"
#include "blockdata.h"
#include <iostream>
using namespace std;
blockdata::blockdata(unsigned int s, bool f, 

unsigned char *p)
{

blocksize = s;
free = f;
blockptr = p;

}
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The blockdata Implementation

// blockdata.cpp
ostream &operator << (ostream &out, const 
blockdata &B)
{

out << "[" << B.blocksize << ",";
if (B.free)

out << "free";
else

out << "allocated";
out << "]";
return out;

}
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The MemoryManager Definition

class MemoryManager

{

public:

MemoryManager(unsigned int memsize);

~MemoryManager();

unsigned char * 
malloc(unsigned int request);

void free(unsigned char * ptr2block);

void showBlockList();
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private:

unsigned int memsize;

unsigned char *baseptr;

dlNode<blockdata>* header;

dlNode<blockdata>* trailer;

void mergeForward(dlNode<blockdata> *p);

void mergeBackward(dlNode<blockdata> *p);

void splitBlock(dlNode<blockdata> *p, 
unsigned int chunksize);

};

The MemoryManager Definition
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The MemoryManager Implementation

MemoryManager::MemoryManager(unsigned int memtotal)
: memsize(memtotal)

{
baseptr = new unsigned char[memsize];

blockdata dummyBlock(0,false,0);
blockdata originalBlock(memsize,true,baseptr);
header = new 

dlNode<blockdata>(dummyBlock,nullptr,nullptr);

trailer = new 
dlNode<blockdata>(dummyBlock,nullptr,nullptr);

header->next = new 
dlNode<blockdata>(originalBlock,header,trailer);

trailer->prev = header->next;

}
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The MemoryManager Implementation (partial)

void MemoryManager::showBlockList() 
{

printDlList(firstBlock,"->");
}
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The MemoryManager Implementation (partial)

void 
MemoryManager::mergeForward(dlNode<blockdata> *p)

{ // Put your code here }

void 
MemoryManager::mergeBackward(dlNode<blockdata> *p)

{ // Put your code here }

void 
MemoryManager::free(unsigned char *ptr2block)

{ // Put your code here }
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The MemoryManager Implementation (partial)

void 
MemoryManager::splitBlock(dlNode<blockdata> *p, 

unsigned int chunksize)
{ // Put your code here }

unsigned char * 
MemoryManager::malloc(unsigned int request)
{ // Put your code here }



Visual Trace of Operations
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The MemoryManager Constructor

MemoryManager M(2048);
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unsigned char *p1 = M.malloc(10);
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Block allocated to p1
When free is called on p1, we must 
merge the resulting consecutive free 
blocks to one 

M.free(p1);
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#include <iostream>
#include <cassert>
#include "MemoryManager.h"

const char * startlist = 
"\n---------BlockList start--------------\n"

const char * endlist = 
"\n---------BlockList end-------------\n" 

int main()
{

MemoryManager heaper(2048);
cout << "heap initialized\n";

cout << startlist;
cout << heaper << endl;
cout << endlist;
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cout << "Doing first malloc:\n";
unsigned char * p1 = heaper.malloc(10);
cout << "malloc done\n";

cout << startlist;
cout << heaper << endl;
cout << endlist;

cout << "On to the second malloc\n";
unsigned char *p2 = heaper.malloc(20);
cout << "malloc done\n";

cout << startlist;
cout << heaper << endl;
cout << endlist;
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cout << "Next free the first pointer\n";
heaper.free(p1);

cout << startlist;
cout << heaper << endl;
cout << endlist;

cout << "Now do a malloc for a block too big for "
<< "the initial open block\n";

p1 = heaper.malloc(15);
cout << "malloc done\n";

cout << startlist;
cout << heaper << endl; n\n";
cout << endlist;
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cout << "Next free the most recently "
<< "allocated pointer\n";

heaper.free(p1);

cout << startlist;
cout << heaper << endl;
cout << endlist;

cout << "Next free the middle pointer\n";
heaper.free(p2);

cout << startlist;
cout << heaper << endl;
cout << endlist;

return 0;
}



Test Output
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heap initialized

-------------BlockList start------------------
[2048,free] 
-------------BlockList end------------------

Executing p1 = malloc(10):
malloc done

-------------BlockList start------------------
[10,allocated]  -> [2038,free] 
-------------BlockList end------------------

Executing p2 = malloc(20):
malloc done

-------------BlockList start------------------
[10,allocated]  -> [20,allocated]  -> [2018,free] 
-------------BlockList end------------------
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Executing free(p1):

-------------BlockList start------------------
[10,free]  -> [20,allocated]  -> [2018,free] 
-------------BlockList end------------------

malloc for a block too big for the initial open block
Executing p1 = malloc(15)
malloc done

-------------BlockList start------------------
[10,free]  -> [20,allocated]  -> [15,allocated]  -> 
[2003,free] 
-------------BlockList end------------------
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Next free the most recently allocated pointer (p1)

-------------BlockList start------------------
[10,free]  -> [20,allocated]  -> [2018,free] 
-------------BlockList end------------------

Next free p2

-------------BlockList start------------------
[2048,free] 
-------------BlockList end------------------
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