Question 1.
Write a function called float dotproduct (Links to an external site.)(float a[], int float b[], int n ), the input are two arrays of the same length n where n could be arbitrary. The entries of the arrays a and b are each positive and strictly less than one. So no overflows are possible.
30 points Please submit these with test cases of arrays of length 3.
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Figure 1: Memory Layout for 2D Matrix in C
When the caller function passes a 2D matrix as a parameter in C language, a double C pointer (**A) is used to pass only the address of the matrix. A is the address of an array of pointers. Element A[i] of this array is the address to the row number i of the 2D matrix. A 2D matrix is represented as a collection of its rows, with each row just being a one-dimensional array. We call this type of organization row-major order (Links to an external site.). Two pointer dereferences are needed to access each element in a matrix. That is, to access A[2][1] (at location (2, 1) of the matrix) we first dereference pointer A to indicate the beginning of row number 2 (=A[2]), and dereference that pointer (A[2]) to the element (A[2][1]).
Declaration of 2D Matrices in Data Segment
The following code shows declaration of 4x4 matrices with initial values in row-major order. Use this code for testing a transpose function.






.data

.align	2				# Request alignment on word (4 byte) boundary



## 4x4 Matrix Declaration ##

A0:	.word 41, 42, 43, 44		# Declare and initialize 1st Row of A

A1:	.word 55, 56, 57, 58		# Declare and initialize 2nd Row of A

A2:	.word 19, 10, 11, 12		# Declare and initialize 3rd Row of A

A3:	.word 23, 24, 25, 26		# Declare and initialize 4th Row of A

A:	.word A0, A1, A2, A3		# Declare and initialize the pointer to the rows



NUMROWS_A:	.word	4		# the number of rows

NUMCOLS_A:	.word	4		# the number of columns



## 4x4 Matrix Declaration ##

T0:	.word  0,  0,  0,  0		# Declare and initialize 1st Row of T

T1:	.word  0,  0,  0,  0		# Declare and initialize 2nd Row of T

T2:	.word  0,  0,  0,  0		# Declare and initialize 3rd Row of T

T3:	.word  0,  0,  0,  0		# Declare and initialize 4th Row of T

T:	.word T0, T1, T2, T3		# Declare and initialize the pointer to the rows



NUMROWS_T:	.word	4		# the number of rows

NUMCOLS_T:	.word	4		# the number of columns

Array A and T are defined in row-major order in the data segment. Not that the first dimensional elements of array A and T store addresses of the corresponding one dimensional arrays. To get the addresses of the second dimensional arrays, we use lw instructions, not la instruction
This example shows how to access A[i][j].
# Assume i is stored in register $t6 and j in register $t7 la $t1, A # Load address of A into register $t1 sll $t2, $t6, 2 # Shift left twice (same as i * 4) add $t2, $t2, $t1 # Address of pointer A[i] lw $t3, ($t2) # Get address of an array A[i] and put it into register $t3 sll $t4, $t7, 2 # Shift left twice (same as j * 4) add $t4, $t3, $t4 # Address of A[i][j] lw $t0, ($t4) # Load value of A[i][j]

so similarly, you can write a function/procedure float readArray(float A[][], int i, int j) that reads the element A[i][j] of an array(returns it) and a procedure writeArray(float A[][], int i, int j, float value) that stores value in A[i][j] or effectively performs A[i][j]=value;
remember all indexes start at 0 like,C/C++,Java and Python.
Question 2
 
Suppose we have the following description above for an n x n array A, write a procedure in MIPS Assembly that performs the transpose of the matrix A and stores it in another matrix B of the same size in the .data segment.
The C code for this would be:
matrix_transpose(float A[][],float B[][] , int n){
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
             B[j][i]=A[i][j] ;
         }
     }
}
Use a few 3X3 arrays as test cases to make sure your code is correct. Remember in general your code should work for any arbitrary array size.
Question 3
Given 2 1 dimensional arrays a and b of length n and a single 2-dimensional array M of size nxn where n could be arbitrary assume the .data segment is as before as we have described above how to make 2-dimensional arrays. Compute the matrix-vector product (Links to an external site.) of vector a and matrix M and store the result in the array b. It is given by the following simple C code:
 
void matrix_vector_product(float M[][], float a[], float b[], int n){
    for(int i = 0; i < n; i++){
        for(int j = 0; j < n; j++){
                   b[i] += A[i][j] *a[j];
            }
       }
}
Again use a few test cases with 3X3 matrices and vectors of length 3.
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