
Com S 227
Spring 2017

Assignment 2
220 points

Due Date: Friday, February 17, 11:59 pm (midnight)
NO LATE SUBMISSIONS

(Remember that Exam 1 is MONDAY, February 20.)

General information

This assignment is to be done on your own. See the Academic Dishonesty policy in the
syllabus, http://www.cs.iastate.edu/~cs227/syllabus.html , for details.

You will not be able to submit your work unless you have completed the Academic
Dishonesty policy acknowledgement on the Homework page on Blackboard. Please do this
right away.

If you need help, see your instructor or one of the TAs. Lots of help is also available through the
Piazza discussions.

Note: Our first exam is Monday, February 20, which is just three days after the due date for this
assignment. It will not be possible to have the assignments graded and returned to you prior to
the exam. We can post a sample solution on February 18.

Please start the assignment as soon as possible and get your questions answered right away!

Introduction

The purpose of this assignment is to give you some practice working with conditional
statements. In addition, it will serve as an example of how a Java class might interact with other
Java classes to form a complete application.

For this assignment you will implement one class, called FootballGame, that encapsulates the
state of a highly simplified form of the charming and popular game known as "American

football". If you know nothing about football, never fear, neither do we! We just looked it up
on Wikipedia! Although the real-life game includes many complex and byzantine rules, we are
going to ignore most of them. For a precise explanation of the simplified rules that we are using
for this assignment, and the exact behavior of the FootballGame methods, see the online
javadoc:

http://web.cs.iastate.edu/~cs227/homework/hw2/doc/

What's the rest of that stuff described in the Javadoc??

For this assignment, your job is to implement only the FootballGame class. The Javadoc also
describes three other classes in a package called example: Team, OutcomeGenerator, and UI.
These are provided just to illustrate how a class like FootballGame might form part of a larger
system, and to give you a way to play with it after you get it implemented. The source code for
these three classes is provided for you. You are not required to read them or use them to
complete this assignment, but you might find them interesting.

The sample code also includes an incomplete skeleton for FootballGame that has just the
required constant declarations. Note that the UI code will not compile until you have at least
written stubs for the required constructor and methods of FootballGame. Once your
FootballGame class is implemented and tested, you can try out the UI just by running it (the UI
class has a main method).

Importing the sample code

The sample code includes a partial skeleton of the FootballGame class. It is distributed as a
complete Eclipse project that you can import. However, the UI code will not compile until you
have added stubs for the required methods of FootballGame. See the "getting started" section.
General instructions for importing an Eclipse project:

1. Download the zip file to a location outside your workspace. You don’t need to unzip it.
2. In Eclipse, go to File -> Import -> General -> Existing Projects into Workspace, click

Next.
3. Click the radio button for “Select archive file”.
4. Browse to the zip file you downloaded and click Finish.

Alternate procedure: If you have an older version of Java (below 8) or if for some reason you
have problems with this process, or if the project does not build correctly, you can construct the
project manually as follows:

1. Unzip the zip file containing the sample code (you have to actually extract the files, not
just double click on the zip file to see them)

2. In Windows File Explorer, or OS X Finder, browse to the src directory of the zip file
contents

3. Create a new empty project in Eclipse
4. In the Package Explorer, navigate to the src folder of the new project.
5. Drag the hw2 and example folders from Explorer/Finder into the src folder in Eclipse.

Testing and the SpecCheckers

As always, you should try to work incrementally and write tests for your code as you develop it.
One of the best ways to start implementing a method is to first write a simple test case or usage
example, so that you have absolutely no doubt as to what the code should do. There are several
examples shown in the "getting started" section.

More often than not, when you start to write simple tests like the ones shown, you'll have
questions about what a method is really supposed to do. Since test code that you write is not a
required part of this assignment and does not need to be turned in, you are welcome to post
your test code on Piazza for others to check, use and discuss.

The specchecker, like the one from Assignment 1, will run a number of functional tests. You
will nonetheless find it extremely worthwhile to write simple test cases like the ones above as
you develop your code. Additional test cases may be added when the assignments are
graded.

More about grading

Be sure you have checked out the feedback from the grader on your Assignment 1.

This is a "regular" assignment so we are going to read your code. Your score will be based
partly (about a third) on the specchecker's functional tests and partly on the grader's assessment
of the quality of your code. This means you can get partial credit even if you have errors, and it
also means that even if you pass all the specchecker tests you can still lose points. Are you doing
things in a simple and direct way that makes sense? Are you defining redundant instance
variables? Some specific criteria that are important for this assignment are:

• Use instance variables only for the “permanent” state of the object, use local variables for
temporary calculations within methods.

o You will lose points for having lots of unnecessary instance variables

o All instance variables should be private.
• Accessor methods should not modify instance variables.

See the "Style and documentation" section below for additional guidelines.

Style and documentation

Roughly 15% of the points will be for documentation and code style. Here are some general
requirements and guidelines:

• Each class, method, constructor and instance variable, whether public or private, must
have a meaningful and complete Javadoc comment. Class javadoc must include the
@author tag, and method javadoc must include @param and @return tags as appropriate.

o Try to state what each method does in your own words, but there is no rule
against copying and pasting the descriptions from this document.

o Run the javadoc tool and see what your documentation looks like! You do not
have to turn in the generated html, but at least it provides some satisfaction :)

• All variable names must be meaningful (i.e., named for the value they store).
• Your code should not be producing console output. You may add println statements

when debugging, but you need to remove them before submitting the code.

• Do not embed numeric literals in your code (except 0 and 1 for the team numbers). Use
the defined constants wherever appropriate.

• Internal (//-style) comments are normally used inside of method bodies to explain how
something works, while the Javadoc comments explain what a method does. (A good
rule of thumb is: if you had to think for a few minutes to figure out how something
works, you should probably include a comment explaining how it works.)

o Internal comments always precede the code they describe and are indented to the
same level.

• Use a consistent style for indentation and formatting.
o Note that you can set up Eclipse with the formatting style you prefer and then use Ctrl-Shift-F to

format your code. To play with the formatting preferences, go to Window->Preferences->Java-
>Code Style->Formatter and click the New button to create your own “profile” for formatting.

If you have questions

For questions, please see the Piazza Q & A pages and click on the folder assignment2. If you
don’t find your question answered, then create a new post with your question. Try to state the
question or topic clearly in the title of your post, and attach the tag assignment2. But
remember, do not post any source code for the classes that are to be turned in. It is fine to post

source code for general Java examples that are not being turned in, and for this assignment you
are welcome to post and discuss test code. (In the Piazza editor, use the button labeled “pre” to
have Java code formatted the way you typed it.)

If you have a question that absolutely cannot be asked without showing part of your source code,
make the post “private” so that only the instructors and TAs can see it. Be sure you have stated a
specific question; vague requests of the form “read all my code and tell me what’s wrong with it”
will generally be ignored.

Of course, the instructors and TAs are always available to help you. See the Office Hours
section of the syllabus to find a time that is convenient for you. We do our best to answer every
question carefully, short of actually writing your code for you, but it would be unfair for the staff
to fully review your assignment in detail before it is turned in.

Any posts from the instructors on Piazza that are labeled “Official Clarification” are considered
to be part of the spec, and you may lose points if you ignore them. Such posts will always be
placed in the Announcements section of the course page in addition to the Q&A page. (We
promise that no official clarifications will be posted within 24 hours of the due date.)

Suggestions for getting started

1. Create a new Eclipse project and within it create a package hw2.

2. Go ahead and create the FootballGame class in the hw2 package, or download the skeleton
from the sample code. Add the constant declarations and put in stubs for all the methods and
constructors described in the Javadoc. For methods that need to return a value, just return a
“dummy” value as a placeholder. At this point there should be no compile errors in the project.

3. Import and run the first specchecker. Start reading the output at the top. Make sure you don't
have any errors of the form "MISSING CLASS" or "Class does not conform to specification".

4. Javadoc the classes and methods. This is a required part of the assignment, and doing it now
will help clarify for you what each method is supposed to do before you begin the actual
implementation.

• Copying method descriptions from the online Javadoc is perfectly acceptable,
though you are not required to be as detailed as the online documentation.
You'll need to fill in the @param and @return tags for completeness.

• Don’t forget to add a brief Javadoc to the class itself, with an @author tag with
your name

5. Now you'll need to start thinking about instance variables. Looking at the accessor methods
often gives you clues about what information needs to be stored in the object. For example, how
will you implement getYardsToGoalLine ? The current location of the ball will have to be
stored somehow in an instance variable. Make sure you initialize it correctly in the constructor.
This is easy to illustrate and check with a simple test case:

 FootballGame game = new FootballGame();
 System.out.println(game.getYardsToGoalLine()); // expected 70

Other obvious cases include getScore, getDown, and getOffense. Go ahead and add relevant
instance variables and implement these accessors.

6. The most complex method is runOrPass, since you can tell from the Javadoc that there are a
lot of cases to consider. So instead, it might make sense to think about a simpler method first
and make sure you get it working correctly. The method punt is pretty simple. The ball moves
forward the given amount, and then the other team becomes the offense. State by writing a
simple test case such as this,

"After a punt, the other team becomes the offense."

 FootballGame game = new FootballGame();
 System.out.println(game.getOffense()); // expected 0
 game.punt(50);
 System.out.println(game.getOffense()); // expected 1

"After a 50 yard punt from the 70 yard line, the other team becomes the offense with 80 yards to
the goal."

 FootballGame game = new FootballGame();
 System.out.println(game.getOffense()); // expected 0
 System.out.println(game.getYardsToGoalLine()); // expected 70
 game.punt(50);
 System.out.println(game.getOffense()); // expected 1
 System.out.println(game.getYardsToGoalLine()); // expected 80

(Aside: if you use an integer 0 or 1 to represent which team is the offense, you can switch between them
easily with a line of code such as

theOffense = 1 - the Offense;

If you're using a boolean variable, you could do it like this with the "not" operator,

offenseIsTeam0 = !offenseIsTeam0;)

7. Maybe next try fieldGoal, which is similar to punt, but also may update the score if the
"success" parameter is true. Again, try a couple of scenarios in a simple test case:

"After a failed field goal, the other team becomes the offense with the ball in its current
location."

 FootballGame game = new FootballGame();
 game.fieldGoal(false);
 System.out.println(game.getOffense()); // expected 1
 System.out.println(game.getYardsToGoalLine()); // expected 30

"After a successful field goal, the other team becomes the offense with the ball 70 yards from the
goal line."

 game = new FootballGame();
 game.fieldGoal(true);
 System.out.println(game.getOffense()); // expected 1
 System.out.println(game.getYardsToGoalLine()); // expected 70
 System.out.println(game.getScore(0)); // expected 3

The method extraPoint is similar too. (Although it is expected that extraPoint is only called
by clients after a touchdown, there is no mechanism to enforce this, and the method should still
work as expected.)

8. Now you'd better start thinking about runOrPass. The first thing to think about is updating
the ball's location. At first, don't worry about counting "downs", just check that the location is
updating. For example, if the offense runs or passes 5 yards, what should you observe about the
ball's location?

"After running or passing 5 yards, the ball should be 5 yards closer to the goal".

 FootballGame game = new FootballGame();
 System.out.println(game.getYardsToGoalLine()); // expected 70
 game.runOrPass(5); // advance the ball 5 yards
 System.out.println(game.getYardsToGoalLine()); // expected 65

9. Next, check for a touchdown (distance to goal is negative), and adjust the score accordingly.
(You don't switch the offense or adjust the ball location after a touchdown, since the client is
supposed to call extraPoint to handle that.)

10. Finally, add a mechanism for counting downs. At this point you'll need to figure out how to
detect whether the ball has advanced 10 yards since the first down. If so, the offense gets to start
another first down. If not, the other team gets the ball. Essentially, you are implementing
getYardsToFirstDown. Depending on how you have set things up so far, you may need another

instance variable or two. (Remember that every time the other team becomes the offense, it
starts with a first down.) For example, try a scenario like this:

 FootballGame game = new FootballGame();
 System.out.println(game.getDown()); // expected 1
 System.out.println(game.getYardsToFirstDown()); // expected 10
 game.runOrPass(-4);
 System.out.println(game.getDown()); // expected 2
 System.out.println(game.getYardsToFirstDown()); // expected 14
 game.runOrPass(10);
 System.out.println(game.getDown()); // expected 3
 System.out.println(game.getYardsToFirstDown()); // expected 4
 game.runOrPass(20);
 System.out.println(game.getDown()); // expected 1
 System.out.println(game.getYardsToFirstDown()); // expected 10

What to turn in

Note: You will need to complete the "Academic Dishonesty policy questionnaire," found on
the Homework page on Blackboard, before the submission link will be visible to you.

Please submit, on Blackboard, the zip file that is created by the second SpecChecker. The file
will be named SUBMIT_THIS_hw2.zip. and it will be located in the directory you selected when
you ran the SpecChecker. It should contain one directory, hw2, which in turn contains one file,
FootballGame.java.

Please LOOK at the zip file you upload and make sure it is the right one!

Submit the zip file to Blackboard using the Assignment 2 submission link and verify that your
submission was successful by checking your submission history page. If you are not sure
how to do this, see the document "Assignment Submission HOWTO" which can be found in the
Piazza pinned messages under “Syllabus, office hours, useful links.”

We recommend that you submit the zip file as created by the specchecker. If necessary for some reason,
you can create a zip file yourself. The zip file must contain the directory hw2, which in turn should contain
the file FootballGame.java. Make sure all files have the extension .java, NOT .class. You can
accomplish this easily by zipping up just the src directory of your project (NOT the entire project). The file
must be a zip file, so be sure you are using the Windows or Mac zip utility, and not a third-party
installation of WinRAR, 7-zip, or Winzip.

Appendix - test scenarios used in the last few SpecChecker test cases

Scenario 1:

Team 0 runs 4 yards at a time to -2, and makes extra point
Team 1 runs 4 yards at a time to -2, and makes extra point
Team 0 runs to 20 yard line and then makes field goal
Team 1 runs 4 yards at a time to -2 and makes extra point

Scenario 2:

Team 0 runs 4 yards at a time to -2 and makes extra point
Team 1 runs to 20 yard line and makes field goal
Team 0 runs 1 yard at a time x 4, first down for team 1
Team 1 runs to 20 yard line and misses field goal attempt
Team 0 runs 4 yards at a time to -4, misses extra point

Scenario 3:

Team 0 runs 4 yards at a time to -2, and makes extra point
Team 1 runs to 20 yard line and makes field goal
Team 0 punts 20 yards
Team 1 runs to 20 yard line, misses field goal attempt
Team 0 runs 4 yards at a time to -4, makes extra point
Team 1 punts 20 yards
Team 0 runs to 20 yard line, makes field goal
Team 1 runs to 20 yard line, misses field goal attempt
Team 0 runs 4 yards at a time to -4, makes extra point
Team 1 runs to 20 yard line, makes field goal
Team 0 punts 20 yards
Team 1 runs to 20 yard line, misses field goal attempt

