
MATH 210 Assignment 4
NumPy and Matplotlib

INSTRUCTIONS

◦ Create a new Python 3 Jupyter notebook

◦ Answer each question in the Jupyter notebook and clearly label the solutions with headings

◦ Functions should include documentation strings and comments

◦ There are 24 total points and each question is worth 4 points

◦ Submit the .ipynb file to Connect by 6pm Tuesday, February 14, 2017

◦ You may work on these problems with others but you must write your solutions on your own

QUESTIONS

1. Define a function called curve which takes inputs A, B and C and plots the parametric curve:

x = A sin3(t) , y = B cos(t)− C cos(2t) , t ∈ [0, 2π] ,

Use the plt.axis('equal') command to display the figure with equal units on both axes.
For example:



2. Write a function called power_series which takes 2 input parameters a and x where a is a
1-dimensional NumPy array representing a sequence a0, a1, . . . , aN and x is a number, and
the function returns the (partial) power series sum

N∑
k=0

a0x
k

For example:

3. (a) Write LaTeX code to display the Fourier series of the triangle wave:

ftriangle(t) =
8

π2

∞∑
k=0

(−1)k
sin(2π(2k + 1)t)

(2k + 1)2

(b) Write a function called triangle_wave which takes a positive integer N and a Python
list interval of length 2 and plots the Nth partial sum of the Fourier series:

ftriangle,N (t) =
8

π2

N∑
k=0

(−1)k
sin(2π(2k + 1)t)

(2k + 1)2

over the interval given by the list interval. For example:

4. (a) Write LaTeX code to display the Fourier series of the sawtooth wave:

fsawtooth(t) =
2

π

∞∑
k=1

(−1)k+1 sin(2πkt)

k



(b) Write a function called sawtooth_waves which takes 3 parameters n, m and T and
creates a n by m grid of subplots (with nm total plots) where the Nth partial sum of
the Fourier series

fsawtooth,N (t) =
2

π

N∑
k=1

(−1)k+1 sin(2πkt)

k

is plotted in the Nth subplot position over the interval [0, T ]. For example:

Note: the command plt.tight_layout() will provide spacing between subplots to
display the figure properly.

5. (a) Write LaTeX code to display the Euler product formula for the Riemann zeta function:

ζ(s) =
∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
=

1

1− 2−s
· 1

1− 3−s
· 1

1− 5−s
· 1

1− 7−s
· · · 1

1− p−s
· · ·

(b) Write a function called euler_product which take 2 input parameters s and N and
computes the partial Euler product∏

p≤N

1

1− p−s
=

1

1− 2−s
· 1

1− 3−s
· 1

1− 5−s
· 1

1− 7−s
· · · 1

1− p−sN

where pN denotes the largest prime less than or equal to N . For example:

The example above shows an approximation for the special value formula:

ζ(4) =
π4

90



6. Write a function called slope_field which takes 4 input parameters f, tlims, ylims and
grid_step where

◦ f is a function of 2 variables f(t, y) representing the right side of a first order differential
equation y′ = f(t, y)

◦ tlims and ylims are Python lists of length 2 which set the display limits of the figure

◦ grid_step is a number which sets the distance between grid points in the plot

The function should plot a small line (ie. length smaller than grid_step) of slope f(ti, yj)
centred at (ti, yj) for each point (ti, yj) in the grid of points defined by the t and y limits and
the grid step. The result is the slope field for the equation y′ = f(t, y). For example:


