
Interpolation ∗

Hector D. Ceniceros

1 Approximation Theory

Given f ∈ C[a, b], we would like to find a “good” approximation to it
by “simpler functions”, i.e. functions in a given class (or family) Φ. For
example,Φ = Pn = {all polynomials of degree ≤ n}.

A natural problem is that of finding the best approximation to f by func-
tions in Φ. But how do we measure the accuracy of any approximation? that
is, what norm1 do we use? We have several choices for norms of functions.
The most commonly used are:

1. The max or infinity norm: ‖f‖∞ = supx∈[a,b] |f(x)|.

2. The 2-norm: ‖f‖2 = (
∫ b
a
f 2(x)dx)

1
2 .

3. The p-norm: ‖f‖p = (
∫ b
a
fp(x)dx)

1
p .

Later, we will need to consider weighted norms: for some positive function
ω(x) in [a, b] (it could be zero on a finite number of points) we define

‖f‖ω,2 =

(∫ b

a

ω(x)f 2(x)dx

) 1
2

.(1)

∗These are lecture notes for Math 104 A. These notes and all course materials are
protected by United States Federal Copyright Law, the California Civil Code. The UC
Policy 102.23 expressly prohibits students (and all other persons) from recording lectures
or discussions and from distributing or selling lectures notes and all other course materials
without the prior written permission of the instructor.

1A norm ‖ · ‖ is a real valued function on a vector space such that (1) ‖f‖ > 0, f 6≡ 0,
(2) ‖λf‖ = |λ|‖f‖ for any λ scalar, and (3) ‖f + g‖ ≤ ‖f‖+ ‖g‖.
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Then, by best approximation in Φ we mean a function p ∈ Φ such that

‖f − p‖ ≤ ‖f − q‖,∀q ∈ Φ.

Computationally, it is often more efficient to seek not the best approximation
but one that is sufficiently accurate and fast converging to f . The central
building block for this approximation is the problem of interpolation.

2 Interpolation

Let us focus on the case of approximating a given function by a polynomial
of degree at most n. Then the interpolation problem can be stated as follows:
Given n+1 distinct points, x0, x1, ..., xn called nodes and corresponding values
f(x0), f(x1), ..., f(xn), find a polynomial of degree at most n, Pn(x), which
satisfies (the interpolation property)

Pn(x0) = f(x0)
Pn(x1) = f(x1)

...
Pn(xn) = f(xn).

Let us represent such polynomial as Pn(x) = a0 +a1x+ · · ·+anx
n. Then,

the interpolation property means

Pn(x0) = f(x0), Pn(x1) = f(x1), · · · , Pn(xn) = f(xn),

which implies
a0 + a1x0 + · · ·+ anx

n
0 = f(x0)

a0 + a1x1 + · · ·+ anx
n
1 = f(x1)

...

a0 + a1xn + · · ·+ anx
n
n = f(xn).

This is a linear system of n+ 1 equations in n+ 1 unknowns (the polynomial
coefficients a0, a1, . . . , an). In matrix form:

1 x0 x20 · · ·xn0
1 x1 x21 · · ·xn1
...
1 xn x2n · · ·xnn



a0
a1
...
an

 =


f(x0)
f(x1)

...
f(xn)

(2)
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Does this linear system have a solution? Is this solution unique? The answer
is yes to both. Here is a simple proof. Take f ≡ 0, then Pn(xj) = 0,for
j = 0, 1, ..., n but Pn is a polynomial of degree ≤ n, it cannot have n + 1
zeros unless Pn(x) ≡ 0, which implies a0 = a1 = · · · = an = 0. That is,
the homogenous problem associated with (2) has only the trivial solution.
Therefore, (2) has a unique solution.

In general the values to interpolate might not come from a function.
They are just data supplied to us. We will often write (x0, f0), (x1, f1), etc.,
to emphasize this more general setting.

Example 1. As an illustration let us consider interpolation by a linear poly-
nomial, P1(x). Suppose we are given (x0, f0) and (x1, f1). We have written
P1(x) explicitly in the Introduction. We write it now in a different form:

P1(x) =
x− x1
x0 − x1

f0 +
x− x0
x1 − x0

f1(3)

Clearly, this polynomial has degree at most 1 and satisfies the interpolation
property:

P1(x0) = f0,(4)

P1(x1) = f1.(5)

Example 2. Given (x0, f0), (x1, f1), (x2, f2) let us construct P2(x), the poly-
nomial of degree at most 2 which interpolates these points. The way we have
written P1(x) in (3) is suggestive of how to explicitly write P2(x):

P2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f0 +

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

f1 +
(x− x0)(x− x1)

(x2 − x0)(x1 − x1)
f2.

If we define

l
(2)
0 (x) =

(x− x1)(x− x2)
(x0 − x1)(x0 − x2)

,(6)

l
(2)
1 (x) =

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

,(7)

l
(2)
2 (x) =

(x− x0)(x− x1)
(x2 − x0)(x1 − x1)

,(8)

then we simply have

P2(x) = l
(2)
0 (x)f0 + l

(2)
1 (x)f1 + l

(2)
2 (x)f2.(9)
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Note that each of the polynomials (6), (7), and (8) are exactly of degree 2

and they satisfy l
(2)
j (xk) = δjk

2. Therefore, it follows that P2(x) given by (9)
satisfies the interpolation property

P2(x0) = f0,(10)

P2(x1) = f1,(11)

P2(x2) = f2.(12)

We can now write down the polynomial (of degree at most n) which
interpolates n+ 1 given values, (x0, f0), . . . , (xn, fn), where the interpolation
nodes x0, . . . , xn are assumed distinct.

Define

l
(n)
j (x) =

(x− x0) · · · (x− xj−1)(x− xj+1 · · · (x− xn)

(xj − x0) · · · (xj − xj−1)(xj − xj+1 · · · (xj − xn)

=
n∏

k=0,k 6=j

(x− xk)
(xj − xk)

, for j = 0, 1, ..., n.
(13)

These are called the elementary Lagrange polynomials of degree n. Note that
l
(n)
j (xk) = δjk. Therefore

Pn(x) = l
(n)
0 (x)f0 + l

(n)
1 (x)f1 + · · ·+ l(n)n (x)fn =

n∑
j=0

l
(n)
j (x)fj(14)

interpolates the given data, i.e., it satisfies the interpolation property Pn(xj) =
fj for j = 0, 1, 2, . . . , n. Relation (14) is called the Lagrange form of the in-
terpolating polynomial. The following result summarizes our discussion.

Theorem 1. Given the n + 1 values (x0, f0), . . . , (xn, fn), for x0, x1, ..., xn
distinct. There is a unique polynomial of degree at most n, Pn(x), such that
Pn(xj) = fj for j = 0, 1, . . . , n.

Proof. Pn(x) in (14) is of degree at most n and interpolates the data. Unique-
ness follows from the fundamental algebra : suppose there is another poly-
nomial Qn(x) of degree at most n such that Qn(xj) = fj for j = 0, 1, . . . , n.
Consider W (x) = Pn(x) − Qn(x). This is a polynomial of degree at most n
and W (xj) = Pn(xj) − Qn(xj) = fj − fj = 0 for j = 0, 1, 2, . . . , n, which is
impossible unless W (x) ≡ 0 which implies Qn = Pn.

2δjk is the Kronecker delta, i.e. δjk = 0 if k 6= j and 1 if k = j.
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3 Connection to Best Approximation

We can view interpolation as a linear operator. Suppose that we have n+ 1
distinct nodes x0, x1, . . . , xn contained in an interval [a, b]. Let f and g be two
continuous functions in [a, b] and α and β two scalars. Then, the interpolating
polynomial for αf(x) + βg(x) is P (x) = αPn(x) + βQn(x) where Pn(x) and
Qn(x) are the interpolating polynomials of f and g, respectively. This follows
immediately from (14). Also, note that if f is a polynomial of degree at most
n, its interpolating polynomial is itself, i.e. Pn(x) = f(x).

Now suppose that P ∗n(x) is the best polynomial approximation of f in the
max or uniform norm, i.e.

min
p∈Pn

‖f − P‖∞ = ‖f − P ∗n‖∞,(15)

where Pn = {all polynomials of degree ≤ n}. Let Pn(x) be the interpolating
polynomials of f at x0, x1, . . . , xn. Then,

‖f − Pn‖∞ = ‖f − P ∗n − (Pn − P ∗n)‖∞ ≤ ‖f − P ∗n‖∞ + ‖Pn − P ∗n‖∞.

But Pn(x) − P ∗n(x) is a polynomial of degree at most n which interpolates
f − P ∗n , that is

Pn(x)− P ∗n(x) =
n∑
j=0

l
(n)
j (x)(f(xj)− P ∗n(xj)).

Therefore,

‖Pn − P ∗n‖∞ ≤ Λn‖f − P ∗n‖∞(16)

where

Λn = max
a≤x≤b

n∑
j=0

|l(n)i (x)|(17)

is called the Lebesgue Constant. Using this in (16) we obtain

‖f − Pn‖∞ ≤ (1 + Λn)‖f − P ∗n‖∞.(18)

This inequality connects the interpolation error ‖f − Pn‖∞ with the best
approximation error ‖f − P ∗n‖∞. Let us see if can extract more information
from this connection.
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There is a fundamental result in approximation theory, which states that
any continuous function can be approximated uniformly, with arbitrary ac-
curacy by a polynomial. This is the celebrated Weierstrass Theorem.

Theorem 2. Weierstrass Theorem. Let f be a continuous function in [a, b].
Given ε > 0 there is a polynomial P such that

‖f − P‖∞ < ε.

Weierstrass theorem implies that as we increase the degree the best ap-
proximation polynomial converges uniformly to f , that is ‖f −P ∗n‖∞ → 0 as
n → ∞. However, because the Lebesgue constant Λn is not bounded in n,
we cannot conclude that ‖f − Pn‖∞ as n → ∞, i.e. that the interpolating
polynomial, as we add more and more nodes, converges uniformly to f . That
depends on the regularity of f and on the distribution of the nodes. We will
discuss this further later.

4 Barycentric Formula

The Lagrange form of the interpolating polynomial is not convenient for com-
putations. If we want to increase the degree of the polynomial we cannot
reuse the work done in getting and evaluating a lower degree one. How-
ever, we can obtain a very efficient formula by rewriting the interpolating
polynomial as follows.

Let

w(x) = (x− x0)(x− x1) · · · (x− xn).(19)

The numerator in l
(n)
j (x) is w(x)/(x− xj). Thus, we can write

l
(n)
j (x) = w(x)

λ
(n)
j

x− xj
, λ

(n)
j =

1
n∏
k=0
k 6=j

(xj − xk)
.(20)

Therefore

Pn(x) =
n∑
j=0

w(x)
λ
(n)
j

x− xj
f(xj) = w(x)

n∑
j=0

λ
(n)
j

x− xj
f(xj).(21)
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Now, note that from (14) with f(x) ≡ 1 it follows that

n∑
j=0

l
(n)
j (x) = 1(22)

and diving (21) by (22) we get the so-called Barycentric Formula for inter-
polation:

Pn(x) =

n∑
j=0

λ
(n)
j

x− xj
f(xj)

n∑
j=0

λ
(n)
j

x− xj

, for x 6= xj, j = 0, 1, . . . , n.(23)

For x = xj, j = 0, 1, . . . , n, the interpolation property should be used:
Pn(xj) = f(xj).

The numbers λ
(n)
j depend only on the nodes x0, x1, ..., xn and not on given

values f(x0), f(x1), ..., f(xn). We can precompute them efficiently as follows:

λ
(0)
0 = 1;

for m = 1 : n
for j = 0 : m− 1

λ
(m)
j =

λ
(m−1)
j

xj−xm ;

end
λ
(m)
m = 1

m−1∏
k=0

(xm − xk)
;

end

If we want to add one more point (xn+1, f(xn+1)) we just extend the

m-loop to n+ 1 to generate λ
(n+1)
0 , λ

(n+1)
1 , · · · , λ(n+1)

n+1 .
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For equidistributed points, xj = x0 + jh, j = 0, 1, . . . , n we have

λ
(n)
j =

1

(xj − x0) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)

=
1

(jh)[(j − 1)h] · · · (h)(−h)(−2h) · · · (j − n)h

=
1

(−1)n−jhn[j(j − 1) · · · 1][1 · 2 · · · (n− j)]

=
(−1)j−n

hnn!

n!

j!(n− j)!

=
(−1)j−n

hnn!

(
n

j

)
=

(−1)n

hnn!
(−1)j

(
n

j

)
.

We can omit the factor (−1)n
hnn!

because it cancels out in the Barycentric For-
mula. Thus, for equidistributed points we can use

λ
(n)
j = (−1)j

(
n

j

)
, j = 0, 1, . . . n.(24)

5 Newton’s Form and Divided Differences

There is another representation of the interpolating polynomial which is both
very efficient computationally and very convenient in the derivation of nu-
merical methods based on interpolation. The idea of this representation, due
to Newton, is to use successively lower order polynomials for constructing
Pn(x).

Suppose we have gotten Pn−1(x), that is the interpolating poly of f at
x0, ..., xn−1 and we would like to obtain Pn(x), the interpolating poly of f
at x0, ..., xn by reusing Pn−1(x). Pn(x) − Pn−1(x) = R(x), where R(x) is a
polynomial of degree at most n. Moreover, for j = 0, . . . , n− 1

r(xj) = Pn(xj)− Pn−1(xj) = f(xj)− f(xj) = 0.(25)

Therefore, R(x) can be factored as

R(x) = cn(x− x0)(x− x1) · · · (x− xn−1).(26)
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The constant cn is called the n-th divided difference of f with respect to
x0, x1, ..., xn, and is usually denoted as f [x0, . . . , xn]. Thus, we have

Pn(x) = Pn−1(x) + f [x0, . . . , xn](x− x0)(x− x1) · · · (x− xn−1)(27)

By the same argument, we have

Pn−1(x) = Pn−2(x) + f [x0, . . . , xn−1](x− x0)(x− x1) · · · (x− xn−2),(28)

etc. So we arrive at Newton’s Form of Pn(x):

Pn(x) = f [x0] + f [x0, x1](x− x0) + . . .+ f [x0, . . . , xn](x− x0) · · · (x− xn−1).
(29)

Note that for n = 1

P1(x) = f [x0] + f [x0, x1](x− x0)
P1(x0) = f [x0] = f(x0)

P1(x1) = f [x0] + f [x0, x1](x1 − x0) = f(x1)

Therefore

f [x0] = f(x0)(30)

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
.(31)

and

P1(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0).(32)

Define f [xj] = f(xj) for j = 0, 1, ...n. The following identity will allow us
to compute all the required divided differences.

Theorem 3.

f [x0, x1, ..., xk] =
f [x1, x2, ..., xk]− f [x0, x1, ..., xk−1]

xk − x0
.(33)
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Proof. Let Pk−1 be the interpolating polynomial of degree at most k− 1 of f
at x1, . . . , xk and Qk−1 the interpolating polynomial of degree at most k − 1
of f at x0, . . . , xk−1. Then

P (x) = Pk−1(x) +
x− xk
xk − x0

[Pk−1(x)−Qk−1(x)].(34)

is a polynomial of degree at most k and for j = 1, 2, ....k − 1

Pk(xj) = f(xj) +
xj − xk
xk − x0

[f(xj)− f(xj)] = f(xj).

Moreover, Pk(x0) = Qk−1(x0) = f(x0) and Pk(xk) = Pk−1(xk) = f(xk).
Therefore, P is the interpolation poly of f at x0, ..., xk. The leading order
coefficient of Pk(x) is f [x0, ..., xk] and equating this with the leading order

coefficient of P , f [x1,...,xk]−f [x0,x1,...xk−1]

xk−x0
, gives (33).

To use (33) to obtain the divided difference we construct a table. Set-
ting fj = f(xj) this divided difference table is built column by column as
illustrated below for n = 3.

xj 0th order 1th order 2th order 3th order
x0 f0

f [x0, x1]
x1 f1 f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f2 f [x1, x2, x3]

f [x2, x3]
x3 f3

Example 3. Let f(x) = 1 + x2 and xj = j − 1 for j = 0, . . . , 3. Then

xj 0th order 1th order 2th order 3th order

0 1
2−1
1−0 = 1

1 2 3−1
2−0 = 1

6−2
2−1 = 3 0

2 5 5−3
3−1 = 1

10−5
3−2 = 5

3 10

so P3(x) = 1 + 1(x− 0) + 1(x− 0)(x− 1) + 0(x− 0)(x− 1)(x− 2) = 1 + x2.
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After computing the divided differences, we need to evaluate Pn at a given
point x. This can be done efficiently by suitably factoring it. For example,
for n = 3 we have

P3(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + c3(x− x0)(x− x1)(x− x2)
= c0 + (x− x0) {c1 + (x− x1)[c2 + (x− x2)c3]}

For general n we can use the following Horner-like scheme to get p = Pn(x):
p = cn;
for k = n− 1 : 0

p = ck + (x− xk) ∗ p;
end

Note that

Pk(x) = Pk−1(x) + f [x0, ..., xk](x− x0) · · · (x− xk−1)(35)

where Pk−1(x) is a polynomial of degree ≤ k − 1. Then, the leading order

coefficient of Pk(x) is f [x0, ..., xk] and consequently P
(k)
k (x) = k!f [x0, ..., xk]

and thus

f [x0, ..., xk] =
1

k!
P

(k)
k (x).(36)

6 Cauchy’s Remainder

In the Introduction we proved that if x0, x1, and x are in [a, b] then

f(x)− P1(x) =
1

2
f ′′(ξ(x))(x− x0)(x− x1),

where ξ(x) ∈ (a, b). The general result about the interpolation error is the
following theorem:

Theorem 4. Let f ∈ Cn+1[a, b], x0, x1, ..., xn, x be contained in [a, b], and
Pn(x) be the interpolation polynomial of degree≤ n of f at x0, ..., xn then

f(x)− Pn(x) =
1

(n+ 1)!
f (n+1)(ξ(x))(x− x0)(x− x1) · · · (x− xn),(37)

where min{x0, . . . , xn, x} < ξ(x) < max{x0, . . . , xn, x}.
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Proof. The right hand side of (37) is known as the Cauchy Remainder and
the following proof is due to Cauchy.

For x equal to one of the nodes xj the result is trivially true. Take x fixed
not equal to any of the nodes and define

φ(t) = f(t)− Pn(t)− [f(x)− Pn(x)]
(t− x0)(t− x1) · · · (t− xn)

(x− x0)(x− x1) · · · (x− xn)
.(38)

Clearly, φ ∈ cn+1[a, b] and vanishes at t = x0, x1, ..., xn, x. That is, phi has
at least n+ 2 zeros. Applying Rolle’s Theorem n+ 1 times we conclude that
there exists a point ξ(x) ∈ (a, b) such that φ(n+1)(ξ(x)) = 0. Therefore,

0 = φ(n+1)(ξ(x)) = f (n+1)(ξ(x))− [f(x)− Pn(x)]
(n+ 1)!

(x− x0)(x− x1) · · · (x− xn)

from which (37) follows. Note that the repeated application of Rolle’s theo-
rem implies that ξ(x) is between min{x0, x1, ..., xn, x} and max{x0, x1, ..., xn, x}.

We can use the same argument to relate divided differences to the deriva-
tives of f . Let Pn+1(t) be the interpolating polynomial of f at x0, . . . , xn, x.
Then f(t)−Pn+1(t) vanishes at t = x0, . . . , xn, x. By repeated application of
Rolle’s theorem there is ξ(x) between min{x0, x1, ..., xn, x} and max{x0, x1, ..., xn, x}
such that

0 = fn+1(ξ(x))− P n+1
n+1 (ξ) = fn+1(ξ(x))− (n+ 1)!f [x0, . . . , xn, x].

Therefore

f [x0, ..., xn, x] =
f (n+1)(ξ(x))

(n+ 1)!
.(39)

Similarly, if Pk is the interpolating polynomial of f at x0, x1, ..., xk, then

f [x0, ..., xk] =
1

k!
f (k)(ξ),(40)

where min{x0, . . . , xk} < ξ < max{x0, . . . , xk}. Suppose that we now let
x1, ..., xk → x0. Then ξ → x0 and

lim
x1,...,xk→x0

f [x0, ..., xk] =
1

k!
f (k)(x0).(41)

We can use this relation to define a divided difference where there are
“coincident” nodes. For example f [x0, x1] when x0 = x1 by f [x0, x0] = f ′(x0),
etc. This is going to be very useful for the following interpolation problem.
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7 Hermite Interpolation

The Hermite interpolation problem is: given values of f and some of its
derivatives at the nodes x0, x1, ..., xn, find the interpolating polynomial of
smallest degree interpolating those values. This polynomial is called the
Hermite Interpolation Polynomial and can be obtained with a minor modifi-
cation to the Newton’s form representation.

For example: Suppose we look for a polynomial of P of lowest degree
which satisfies the interpolation conditions:

P (x0) = f(x0),

P ′(x0) = f ′(x0),

P (x1) = f(x1),

P ′(x1) = f ′(x1).

We can view this problem as a limiting case of polynomial interpolation of
f at two pairs of coincident nodes, x0, x0, x1, x1 and we can use Newton’s
Interpolation form to obtain P . The table of divided differences, in view of
(41), is

x0 f(x0)
x0 f(x0) f ′(x0)
x1 f(x1) f [x0, x1] f [x0, x0, x1]
x1 f(x1) f ′(x1) f [x0, x1, x1] f [x0, x0, x1, x1]

(42)

and

P (x) = f(x0) + f ′(x0)(x− x0) + f [x0, x0, x1](x− x0)2 + f [x0, x0, x1, x1](x− x0)2(x− x1).

Example 4. Let f(0) = 1, f ′(0) = 0 and f(1) =
√

2. Find the Hermite
Interpolation Polynomial.

We construct the table of divided differences as follows:

0 1

0 1 0

1
√

2
√

2− 1
√

2− 1

(43)

and therefore

P (x) = 1 + 0(x− 0) + (
√

2− 1)(x− 0)2 = 1 + (
√

2− 1)x2.
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