

IT 647 Responsive Design Tutorial

Responsive design gives web-based graphical user interfaces the flexibility to display content with
fluidity between devices otherwise constrained by varying resolutions. Ultimately, responsive helps with
ease of content readability and content navigation. Resolution is defined as the number of distinct pixels
that may be displayed, and is displayed as height x width (e.g., 1024 x 768, which indicates 1024 pixels in
horizontal width by 768 pixels in vertical height for total display size).

An example of resolution constraints is as follows:

Desktop resolution is typically 1024x768
iPad resolution is 1024x768
iPad mini resolution is 768x1024
iPhone 6 resolution is 1334x750
iPhone 4/4s resolution is 640x960

Not all sites are developed with responsive design tactics applied. However, there is an easy way to tell
if a site is device-agnostic. Open the website in your browser window, then drag the size of your
browser window to a much smaller horizontal width. If responsive design tactics are applied, then you
should see content automatically resize to fit the new height and width. Further, depending on the
techniques applied, you may see the header, logo, footer, and navigation switch out at varying
resolutions to accommodate finger swiping versus mouse cursor engagement.

In this example, notice how the logo resizes, and navigation adjusts to accommodate the various width
constraints:

Another way to identify websites that apply responsive design tactics is to view the source code of the
page. There are a number of scripted methods to create fluid content. For instance, you might create an
inline style with a float and max-width parameter, which enables text to resize dynamically. Many
scripted tactics require meta viewport as follows:

<meta name=”viewport” content=”width=device-width, initial-scale=1”>

The viewport relates to the relative size of the browser or device through the use of length units such as
viewport width (vw), viewport height (vh), minimum of viewport height and width (vmin), and maximum
of viewports height and width (vmax).

Because resolutions must be defined in relativistic sizes, another way to identify responsive design in an
implementation is to look for @media tags with a minimum width of 120 pixels and a maximum width of
420 pixels, or variations of these minimum- and maximum-width dimensions. Typically, designs allow for
one type of header at higher widths and another type with larger icons for finger swiping at lower
widths. This requires that certain styles, images, and layouts only be triggered within a specified relative
range. As a result, you may see one style sheet invoked at a max-width of 420 pixels (with included
minimum boundary defined) but an entirely different style sheet invoked up to a max-width of 768
pixels (with minimum boundary defined). Here is what a full responsive design implementation looks
like with relativistic resolution ranges:

<style type="text/css">
@media (min-width: 481px) and (max-width: 768px) {
 #banner { width:740px; }
 #banner img { max-width:740px; max-height:222px; }
 #main { width:740px; }
 #main-content { width:450px; float:left; }
 #widget-container { width:200px; float:right; }
 .widget-content { width:160px; }
}

@media (min-width: 321px) and (max-width: 480px) {
 #banner { width:450px; }
 #banner img { max-width:450px; max-height:135px; }
 #main { width:450px; }
 #main-content { width:400px;}
 #widget-container { width:400px; }
 .widget-content { width:120px; margin:5px; float:left;}
 .widget-text { display:none; }
}

@media (max-width: 320px) {
 #banner { width:275px; }
 #banner img { max-width:275px; max-height:83px; }
 #main { width:250px; }
 #main-content { width:250px;padding:0px;}
 #widget-container { width:250px; padding:0px; }
 .widget-content { width:250px; margin:5px;}
 .widget-text { display:none; }
}
</style>

It is important to note that many developers do not create responsive design scripts from scratch.
Instead, they download and inject a boilerplate such as Gridiculous, stuffandnonsense.co.uk, Skeleton,
Less Framework, Gumby Framework, and many more.

