Assignmentl (15 pts).

Exercise 1. (8 pts) This exercise is designed to help familiarize the student with
choosing the right data structure for the right problem. If implemented, the parts
of this exercise should be done by making use of an implementation of the
relevant interface (Stack, Queue, Deque, Map, SortedMap, USet, or SSet)
provided by the Java Collections Framework.

Solve the following three problems by reading a text file one line at a time and
performing operations on each line in the appropriate data structure(s). Your
implementations should be fast enough that even files containing a million lines
can be processed in a few seconds. Different solutions are possible your solution
will be evaluated based on correctness and efficiency.

For reasons of unification and readability, and in order to spare you the effort of
elaborating code related to 1/0 streams, please reuse and customize the file
ExamplelnpoutOutputStreams.java provided with this assignment.

In this exercise, the term “the input” refers to a text file or a sequence of lines you
get from the standard input. You can notice this is implemented in the provided
Java file ExamplelnpoutOutputStreams.java.

1.1 (2 pts) Read the first 50 lines of the input and then write them out in reverse
order. Read the next 50 lines and then write them out in reverse order. Do this
until there are no more lines left to read, at which point any remaining lines
should be output in reverse order.

In other words, your output will start with the 50th line, then the 49th, then the
48th, and so on down to the first line. This will be followed by the 100th line,
followed by the 99th, and so on down to the 51st line. And so on.

Your code should never have to store more than 50 lines at any given time.

1.2 (2 pts) Imagine each input line is numbered, starting from 0. Read the input
one line at a time. Output the odd-numbered lines in desecending ascending order
of line number, then output the even-numbered lines in ascending order of line
number. Your implementation should never store more than n/2 +1 lines where n
represents the number of lines of the input.

1.3 (4 pts) You are asked to develop a simple application that provides the
following functionalities.

1. Read the input one line at a time and, than provide an output consisting
in:



a. atext file named ?CompFile.txt (e.g. FilelCompFile.txt) including
all the input lines with no duplicates and ordered according to their
first occurrences in the input. For example the sequence of lines
consisting of karim, bob, lol, bob, alice, bob, lol will be
transformed to karim, bob, lol, alice.

b. atext file named ?UncompArg.txt (e.g. FilelUncompArg.txt) that
stores supplementary information allowing to retrieve the input
before processing as required in the following functionality.

2. Process any two files output of the previous functionality (e.g.
FilelCompFile.txt and FilelUnompArg.txt) producing the original input
that may contain duplicated lines (e.g. Filel.txt).

Exercise 2 (3 pts) Priority Queue implementation.

In this exercise you are asked to develop a reusable implementation of the Abstract
Data Type (ADT) Priority Queue (PQ). Your implementation must reuse existing
implementations of ADT of the Java Collections Framework mentioned
at http://docs.oracle.com/javase/tutorial/collections/implementations/index.html.

We assume that PQ accepts any element having a property named priorityValue
that can be accessed as a public attribute value. This property represents the priority
of an element. The element having the lowest priority will be removed whenever
the PQ instance receives a remove() call. When more than one elements have the
same priority, the PQ ADT allows to remove any of them after a remove() with no
supplementary constraints. We assume also that the frequency of removal is about
1/10 of the frequency of adding elements, so your implementation may consider
this to improve efficiency minimizing the overall cost of theses operations.

Exercise 3 (2 pts) A Dyck word is a sequence of +1's and -1's with the property
that the sum of any prefix of the sequence is never negative. For example, +1, -1,
+1,-1 isaDyck word, but +1, -1, -1, +1 is not a Dyck word since the prefix +1-
1-1 < 0. Describe how to use push(x) and pop() operations of a stack in order to
determine if a sequence of +1's and -1's is a Dyck word. Your description should
consist in a commented pseudocode or java code.

Exercise 4 (2 pts) A matched string is a sequence of {, }, (, ), [, and ] characters
that are properly matched. For example, "~ {{O[]}}" is a matched string, but this
“L{O]}" is not, since the second { is matched with a ]. Show how to use a stack so
that, given a string of length n, you can determine if it is a matched string in
O(n) time. Your answer should consist in a commented pseudocode or Java code.


http://docs.oracle.com/javase/tutorial/collections/implementations/index.html

The submission is through culLearn in one zip file. The solution of each exercise
must be included in a separate directory named “Part” followed by the exercise
number. Thus, the directories names are: Partl.1, Partl.2, Partl.3, Part2, Part3
and Part4. The name of your zip file must be a concatenation of the student full
name and Assign1-2402.zip (e.g. BrandonThomsonAssign1-2402.zip).



