
CSCI	2270	–	Data	structures	and	algorithms	
Instructor:	Hoenigman	
Assignment	2	
Due	Friday,	February	3	before	3pm	
	

Word	analysis	
There	are	several	fields	in	computer	science	that	aim	to	understand	how	people	use	
language.	This	can	include	analyzing	the	most	frequently	used	words	by	certain	
authors,	and	then	going	one	step	further	to	ask	a	question	such	as:	“Given	what	we	
know	about	Hemingway’s	language	patterns,	do	we	believe	Hemingway	wrote	this	
lost	manuscript?”	In	this	assignment,	we’re	going	to	do	a	basic	introduction	to	
document	analysis	by	determining	the	number	of	unique	words	and	the	most	
frequently	used	words	in	two	documents.		
	
Please	read	all	directions	for	the	assignment	carefully.	This	write-up	contains	both	
the	details	of	what	your	program	needs	to	do	as	well	as	implementation	
requirements	for	how	the	functionality	needs	to	be	implemented.	
	
What	your	program	needs	to	do	
There	is	one	test	file	on	Moodle	–	HungerGames_edit.txt	that	contain	the	full	text	
from	Hunger	Games	Book	1.	We	have	pre-processed	the	file	to	remove	all	
punctuation	and	down-cased	all	words.			
	
Your	program	needs	to	read	in	the	.txt	file,	with	the	name	of	the	file	to	open	set	as	a	
command-line	argument.	Your	program	needs	to	store	the	unique	words	found	in	
the	file	in	a	dynamically	allocated	array	and	calculate	and	output	the	following	
information:	

• The	top	n	words	(n	is	also	a	command-line	argument)	and	the	number	of	
times	each	word	was	found	

• The	total	number	of	unique	words	in	the	file	
• The	total	number	of	words	in	the	file	
• The	number	of	array	doublings	needed	to	store	all	unique	words	in	the	file	

	
There	is	a	link	to	a	class	video	on	command-line	arguments	in	the	Resources	
section	of	piazza.	
	
Example:	
	
Running	your	program	using:	
	
./Assignment2 HungerGames_edit.txt 10
	
would	return	the	10	most	common	words	in	the	file	HungerGames_edit.txt	and	
should	produce	the	following	results.	
	

682 - is
492 - peeta
479 - its
431 - im
427 - can
414 - says
379 - him
368 - when
367 - no
356 - are

Array doubled: 7

Unique non-common words: 7682

Total non-common words: 59157
	
Program	specifications	
Use	an	array	of	structs	to	store	the	words	and	their	counts	
There	are	specific	requirements	for	how	your	program	needs	to	be	implemented.	
For	this	assignment,	you	need	to	use	an	array	of	structs	to	store	the	words	and	
their	counts.	The	members	of	the	struct	are	left	to	you,	but	keep	it	as	simple	as	
possible.		
	
Exclude	these	top	50	common	words	from	your	word	counting	
Table	1	shows	the	50	most	common	words	in	the	English	language.	In	your	code,	
exclude	these	words	from	the	words	you	count	in	the	.txt	file.	Your	code	should	
include	a	separate	function	to	determine	if	the	current	word	read	from	the	.txt	file	is	
on	this	list	and	only	process	the	word	if	it	is	not.		
	
Table	1.	Top	50	most	common	words	in	the	English	language	
Rank	 Word	 Rank	 Word	 Rank	 Word	
1	 The	 18	 You	 35	 One	
2	 Be	 19	 Do	 36	 All	
3	 To	 20	 At	 37	 Would	
4	 Of	 21	 This	 38	 There	
5	 And	 22	 But	 39	 Their	
6	 A	 23	 His	 40	 What	
7	 In	 24	 By	 41	 So	
8	 That	 25	 From		 42	 Up	
9	 Have	 26	 They	 43	 Out	
10	 I	 27	 We	 44	 If	
11	 It	 28	 Say	 45	 About	
12	 For	 29	 Her	 46	 Who	
13	 Not	 30	 She	 47	 Get	
14	 On		 31	 Or	 48	 Which	

15	 With	 32	 An	 49	 Go	
16	 He	 33	 Will	 50	 Me	
17	 As	 34	 My	 	 	
	
Use	two	command-line	arguments	
Your	program	needs	to	have	two	command-line	arguments	–	the	first	argument	is	
the	name	of	the	file	to	open	and	read,	and	the	second	argument	is	the	number	of	
most	frequent	words	to	output.	For	example,	running		
	
./Assignment2 HungerGames_edit.txt 20
	
will	read	the	HungerGames_edit.txt	file	and	output	the	20	most	common	words	
found	in	the	file.		
	
Note:	There	is	a	link	to	a	class	video	on	command-line	arguments	in	the	Resources	
section	on	Piazza.	
	
Use	the	array-doubling	algorithm	to	increase	the	size	of	your	array	
We	don’t	know	ahead	of	time	how	many	unique	words	either	of	these	files	has,	so	
you	don’t	know	how	big	the	array	should	be.	Start	with	an	array	size	of	100,	and	
double	the	size	as	words	are	read	in	from	the	file	and	the	array	fills	up	with	new	
words.	Use	dynamic	memory	allocation	to	create	your	array,	copy	the	values	from	
the	current	array	into	the	new	array,	and	then	free	the	memory	used	for	the	current	
array.	This	is	the	same	process	you	used	in	Recitation	3.			
	
Note:	some	of	you	might	wonder	why	we’re	not	using	C++	Vectors	for	this	
assignment.	A	vector	is	an	interface	to	a	dynamically	allocated	array	that	uses	array	
doubling	to	increase	its	size.	In	this	assignment,	you’re	doing	what	happens	behind-
the-scenes	with	a	Vector.	
	
Output	the	top	n	most	frequent	words	
Write	a	function	to	determine	the	top	n	words	in	the	array.	This	can	be	a	function	
that	sorts	the	entire	array,	or	a	function	that	generates	an	array	of	the	n	top	items.	
Output	the	n	most	frequent	words	in	the	order	of	most	frequent	to	least	frequent.		
	
Format	your	output	the	following	way	
When	you	output	the	top	n	words	in	the	file,	the	output	needs	to	be	in	order,	with	
the	most	frequent	word	printed	first.	The	format	for	the	output	needs	to	be:	
	
Count	-	Word	
#	
Array	doubled:	<number	of	array	doublings>	
#	
Unique	non-common	words:		<number	of	unique	words>	
#	

Total	non-common	words:	<total	number	of	words>	
	
Generate	the	output	with	these	commands:	
	
cout<<numCount<<” – “<<word<<endl;
cout<<”#”<<endl;
cout<<”Array doubled: “<<numDoublings<<endl;
cout<<”#”<<endl;
cout<<”Unique non-common words: “<<numUniqueWords<<endl;
	
Submitting	Your	Code:	
Submit	your	assignment	to	the	COG	autograder:		
https://web-cog-csci2270.cs.colorado.edu/submit.html.		
	
Login	to	COG	using	your	identikey	and	password.	Select	the	CSCI2270	-	Hoenigman	
–	HW	#02	from	the	dropdown.	Upload	your	file	and	click	Submit.	Your	file	needs	to	
be	named	Assignment2.cpp	for	the	grading	script	to	run.	COG	will	run	its	tests	
and	display	the	results	in	the	window	below	the	Submit	button.	If	your	code	doesn’t	
run	correctly	on	COG,	read	the	error	messages	carefully,	correct	the	mistakes	in	
your	code,	and	upload	a	new	file.	You	can	modify	your	code	and	resubmit	as	many	
times	as	you	need	to,	up	until	the	assignment	due	date.
	
Submit	your	assignment	to	Moodle	
In	addition	to	submitting	through	COG,	submit	your	.cpp	file	through	Moodle	using	
the	Assignment	2	Submit	link.	Make	sure	your	code	is	commented	enough	to	
describe	what	it	is	doing.	Include	a	comment	block	at	the	top	of	the	.cpp	file	with	
your	name,	assignment	number,	and	course	instructor.	If	you	do	not	submit	your	
work	to	Moodle,	we	will	deduct	points	from	your	grade,	even	if	COG	gives	you	
a	perfect	score.	
	
If	you	do	not	get	your	assignment	to	run	on	COG,	you	will	have	the	option	of	
scheduling	an	interview	grade	with	your	TA	to	get	a	grade	for	the	assignment.	Even	
if	you	do	get	the	assignment	to	run	on	COG,	you	can	schedule	the	interview	if	you	
just	want	to	talk	about	the	assignment	and	get	feedback	on	your	implementation.	
	
What	to	do	if	you	have	questions	
There	are	several	ways	to	get	help	on	assignments	in	2270,	and	depending	on	your	
question,	some	sources	are	better	than	others.	There	is	the	Piazza	forum	that	is	a	
good	place	to	post	technical	questions,	such	as	how	to	shift	an	array.	When	you	
answer	other	students’	questions	on	the	forum,	please	do	not	post	entire	
assignment	solutions.	The	CAs	are	also	a	good	source	of	technical	information,	
especially	questions	about	C++.	If,	after	reading	the	assignment	write-up,	you	need	
clarification	on	what	you’re	being	asked	to	do	in	the	assignment,	the	TAs	and	the	
Instructor	are	better	sources	of	information	than	the	discussion	forum	or	the	CAs.		
	
	

