

Homework #2
CSE140
Prof. Tajana Simunic Rosing

1. Simplify the expression using K-Maps.

(a) $F(a, b, c) = \sum(1, 2, 3, 6, 7)$
(b) $ab + a'b'c' + a'bc'$

2.

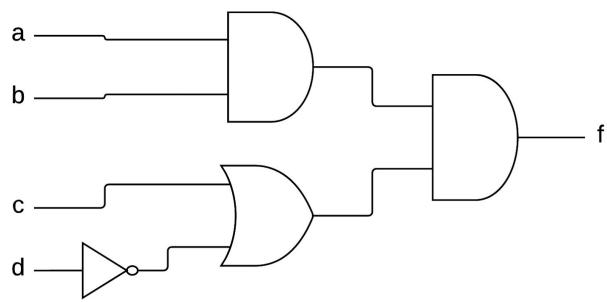
(a) Simplify the following expressions to minimal sum-of-products form using boolean algebra. Verify using K-Map. $(a' + c + d)(b + c + d)(a + b + c')$ HINT: Use consensus theorem.
(b) Simplify the following expressions to minimal product-of-sums form using boolean algebra. Verify using K-Map. $a'c+a'b'd+cd'$.

NOTE: You do not need to mention the name of any theorem or axiom used.

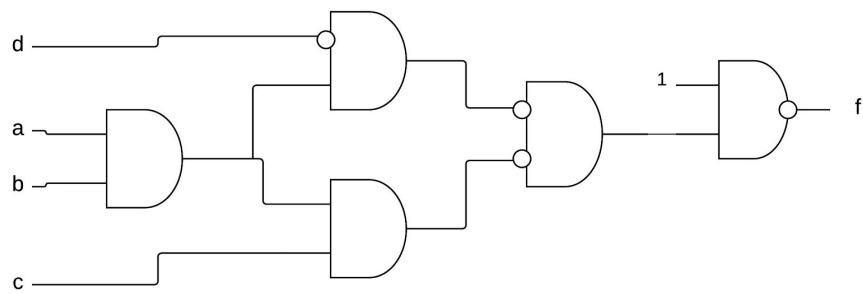
3. Logic minimisation using k-maps

a. A bulb in the staircase has 3 switches. The bulb is turned ON for the following state of the switches.

- Switch A is ON, Switches B,C are OFF
- Switch C is ON, Switches A,B are OFF
- Switches B,C are ON, Switch A is OFF
- Switches A,C are ON, Switch B is OFF


Answer the following questions for the above problem

- i. Give the truth table
- ii. Give expression for output in canonical sum of products form
- iii. Minimize the output expression obtained in part ii using k-map
- iv. Draw the logic circuit for the minimized equation from part iii using any logic gates


b. Determine the minimized SOP **and** POS expression of the following function using k-maps $f(A, B, C, D) = \sum m(4, 6, 8, 10, 11, 15) + \sum d(3, 5, 7, 9)$

4. Determine whether the two following circuits are equivalent using Boolean algebra.

Circuit 1:

Circuit 2:

