Embedded Syst
EEL4742 Homework 1: The AVR Faﬁilif A(i‘Chit},:CfElrl“l:

For the purposes of this homework, you will be examining the AVR family of microcontrollers archi-
tecture. Specifically, we will be looking at the megaAVR and tinyAVR architectures. Development
of AVR started in 1996, and currently serves as the heart of the popular Arduino platform. We
briefly mentioned AVR during class. Recall that AVR is a modified Harvard architecture, that is,
it provides program and data spaces in separate address busses while also providing a mechanism
to transfer data between the two. In this homework, you will be investigating the basis of the
architecture and writing a few assembly programs for it. We recommend looking for the AVR
Instruction Set Manual as well as other documentation you may find in Atmel’s website.

Q.1 Describe the register file of AVR microcontrollers: How many registers are in the register file?
How wide are they? Are there any special purpose registers like in MSP4307 Where are the
stack pointer and status register located?

Q.2 Describe the calling convention utilized by Atmel in their compiler.

Q.3 Utilize your findings from Q.1 and Q.2 to answer the following question. We desire to add two
16bit numbers, 1455 and 3437. Write a small AVR assembly language program to add these
two numbers.

Q.4 What are the X, Y, and Z registers? Write a small assembly program that loads constants into
these registers.

Q.5 Recall from the lectures that for convenience we store variables with permanent store (local
variables declared as static and global variables) in the .data or .bss sections of memory.
The .data section contains variables with permanent store that have been explicitly initialized,
whereas the .bss section contains variables with permanent store that have not been explicitly
initialized (these are implicitly initialized to 0). Recall that because we do not have a program
loader, our program is responsible for performing this initialization.

Fortunately, when the final binary is being linked, the linker script exports the symbols shown
in Table 1. Utilize these symbol names to write two assembly routines, __initialize data and

Name ‘ Description

__data load_start | Location in program memory where the contents that ini-
tializes the .data section is stored.

__data load_end Location in program memory where the contents that ini-
tializes the .data section ends.

__data_start Location in data memory where the contents of the .data
section should reside.

__data_end Location in data memory where the contents of the .data

section should end.

__bss_start Location in data memory where the contents of the .bss
section should start.

__bss_end Location in data memory where the contents of the .bss
section should end.

Table 1: Symbols exported by the linker script in AVR.

__initialize_bss that initializes the .data and .bss sections of data memory, respectively
on the AVR architecture.



