
CS520 Week 6 Assignment

General Rules for Homework Assignments

• You are strongly encouraged to add comments throughout the program. Doing
so will help your facilitator to understand your programming logic and grade
you more accurately.

• You must work on your assignments individually. You are not allowed to copy
the answers from the others. However, you are encouraged to discuss the
approaches to the homework assignments with your section mates and the
facilitator in your section via the discussion board.

• Each assignment has a strict deadline. However, you are still allowed to submit
your assignment within 2 days after the deadline with a penalty. 15% of the
credit will be deducted unless you made previous arrangements with your
facilitator and professor. Assignments submitted 2 days after the deadline will
not be graded.

• When the term lastName is referenced in an assignment, please replace it with
your last name.

You are strongly encouraged to add comments into your program!

Create a new Java Project in Eclipse named HW6_lastName and complete the
following requirements based on the Threads. Several threads will share a single
object and contribute their individual result to the shared object. The shared object
accumulates the partial results.

Part1 (50 points)

Create a package named cs520.hw6.part1. Using this package, create the following
classes.

1. Create a class named SharedResults as follows. The class keeps track of the
shared results.

a. The instance (or member) private variable – results (ArrayList of
integers).

b. A default constructor that initializes the above data structure.
c. A void addToResults method which takes the given integer argument

and adds it to the shared results. This method then prints to the
console the name of the current thread, the value it added, and the
shared results data structure. Handle the synchronization issue with
this method.

d. The getResult method with no arguments which returns the sum of the
values in the shared results data structure. Handle the synchronization
issue with this method.

2. Create a class named LongTask which extends the Thread class.

a. The instance (or member) private variables – sharedData (of
type SharedResults), start (integer) and end (integer).

b. A single constructor which takes the above three arguments and
stores them in the instance values. Also, create a name for this
thread as Thread_<start>_<end>

c. In the run method, add the integer numbers from start to end (both
inclusive) using a for loop. Also, sleep for a random time (up to 10
milliseconds) in each iteration of the loop. After the loop, invoke the
addToResults method of the shared object and provide this
accumulated sum.

3. Create a Test class to test the following functionality in its main method.
a. Create the SharedResults object and assign it to a variable.
b. Create five LongTask objects by passing the above shared

object and the start and end values for each as (1, 100), (101, 200),
(201, 300), (301, 400), and (401, 500) respectively.

c. Start each thread as it is created.
d. Wait for all the threads to complete using the join method.
e. Print the result from the shared object.

 Sample Output:

Different runs of the program will produce the output in different sequences,
but the final result would be the same. Two runs of the program are shown
below.

Part2 (50 Points)

Modify the above program using the wait/notifyAll features. When a thread tries to
contribute its results to the shared data, and if it is not this thread’s turn, it has to wait.
When it is the thread’s turn, its contributing result is added to the shared results and
all other threads are notified.

Create a package named cs520.hw6.part2. Using this package, create the following
classes.

2. Create a class named SharedResults as follows. The class keeps track of the
shared results.

e. The instance (or member) private variable – results (ArrayList of
integers).

f. A default constructor that initializes the above data structure.
g. A void addToResults method which takes two arguments, the calling

thread’s turn and the contributing result that needs to be added to the
shared results. Implement the wait and notifyAll functionality in this
method. Print to the console the thread’s turn, the name of the current
thread, the value it added, and the shared results data structure.
Handle the synchronization issue with this method. Use the size of the
data structure to determine if it is the calling thread’s turn.

h. The getResult method with no arguments which returns the sum of the
values in the shared results data structure. Handle the synchronization
issue with this method.

4. Create a class named LongTask which extends the Thread class.

a. The instance (or member) private variables – sharedData (of
type SharedResults), start (integer) , end (integer) and turn (integer).

b. A single constructor which takes the above four arguments and
stores them in the instance values. Also, create a name for this
thread as Thread_<start>_<end>

c. In the run method, add the integer numbers from start to end (both
inclusive) using a for loop. Also, sleep for a random time (up to 10
milliseconds) in each iteration of the loop. After the loop, invoke the
addToResults method of the shared object and provide this thread’s
turn and its this accumulated sum.

5. Create a Test class to test the following functionality in its main method.
a. Create the SharedResults object and assign it to a variable.
b. Create five LongTask objects by passing the above shared

object and the start ,end and turn values for each as (1, 100, 0),
(101, 200, 1), (201, 300, 2), (301, 400, 3), and (401, 500, 4)
respectively.

c. Start each thread as it is created.
d. Wait for all the threads to complete using the join method.
e. Print the result from the shared object.

 Sample Output:

Two sample runs of the program are shown below.

Submission:

Create an archive of your Eclipse project using the following steps. Select the
HW6_lastName project in the Eclipse IDE’s Package Explorer or the Navigator
window.

Click File->Export. Select the General->Archive File option. Click Next.

Specify the “To archive file:” entry as say, C:\Temp\HW6_lastName.zip.

The zip file will be created and stored in the C:\Temp folder.

Submit this zip file as an attachment in the Assignment Section.

