
Assigned: Nov. 4 Fall 2016 Due: Nov. 14

E7 Homework Assignment 10:
Interpolation and Root Finding

The purpose of this assignment is to practice numerical methods techniques.

Note: A template will not be provided for this assignment. You still need to publish and submit your
.m file. Neatly organize it using code cells and comments as was done in the previous templates. The
autograder does not rely on the format of this file.

This completed assignment, named HW10 Firstname Lastname.m, should be uploaded to bCourses
along with the .mat file that is generated by the autograder. You may run the autograder as many
times as you like to check your work as you complete the assignment; the .mat file will be regenerated
each time, and your score will only be recorded based on the .mat file that you upload. You will also
publish your .m files and upload a .PDF version of the result to bCourses.

Remember to upload the following to the bCourses website:

• HW10 Firstname Lastname.m

• HW10 Firstname Lastname.pdf

• HW10 Score.mat

• All function files that you are asked to create

Directions to upload files can be found at http://guides.instructure.com/s/2204/m/4212/l/

54353-how-do-i-upload-a-file-to-my-assignment-submission

Part 1: Interpolation

1. A Taylor series expansion about 0 (also known as MacLaurin series) for the natural logarithm
function can be written as follows:

log (1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . .

This only works for |x| < 1 (it converges slowly for x = 1).

Write a function myTaylor with the function declaration line (24 points)

begin code

function [y, diff_norm] = myTaylor(x, N)

end code

1 of 10

http://guides.instructure.com/s/2204/m/4212/l/54353-how-do-i-upload-a-file-to-my-assignment-submission
http://guides.instructure.com/s/2204/m/4212/l/54353-how-do-i-upload-a-file-to-my-assignment-submission

Assigned: Nov. 4 Fall 2016 Due: Nov. 14

The inputs are:

• x: a column vector of the x data points.

• N: a scalar that represents the number of terms to be included in the Taylor series expansion.
For example, the equation shown above represents a Taylor series expansion with N = 4

terms.

The outputs are:

• y: a column vector with the same size as x which is the Taylor series expansion of the input
vector x with N terms.

• diff norm: the scalar norm of the difference between the Taylor series expansion y and the
function log (1 + x) evaluated at x.

Your function is not valid for x ≤ −1. If any of the x entries is invalid, your function should
display a warning ’You have values that would result in imaginary numbers.’. For
every x value that is less than or equal to -1, the corresponding logarithm will be NaN. When
calculating diff norm, exclude the NaN entries.

If any of the x value is greater than or equal to 1, the logarithm should be calculated by making
use of the mathematical identity

log (1 + x) = − log

(
1

1 + x

)
= − log

(
1 +

(
1

1 + x
− 1

))
= − log (1 + s)

where s = 1
1+x − 1 = − x

1+x and |s| < 1. It is important to notice that for this case, the value of
x(i) will still need to be calculated approximately (i.e find a way to incorporate the approximating
Taylor series for the identity.)

Include the following test case in your template file.

begin code

>> x = linspace(-2,2)’;

>> N = 3;

[y, diff_norm] = myTaylor(x, N);

Warning: You have values that would result in imaginary numbers.

> In myTaylor (line 14)

>> diff_norm

diff_norm =

3.3190

end code

Additionally, you may want to generate a graph to compare your approximation y and the true
value just like in Figure 1.

Note: The figure will not be graded but it serves as a quick way to check the output of your
function.

2 of 10

Assigned: Nov. 4 Fall 2016 Due: Nov. 14

Figure 1: Result of Taylor series expansion

2. You are interested in understanding the mechanical properties of a new material under constant
load. To do this, you place a load on the material and track the displacement (measured in mm)
over a period of 60 minutes. In this example, your independent variable time is stored in the
variable t and your dependent variable displacement is stored in the variable d. Now that you
have a set of t and d data points, you want to interpolate a curve to fit the data. (24 points)

Write a function myInterpPlotter with the function declaration line

begin code

function D = myInterpPlotter(t,d,T,option)

end code

The inputs are:

• t: an n-by-1 column vector containing the time data points.

• d: an n-by-1 column vector containing the displacement data points.

• T: an m-by-1 column vector containing the time instances for which an interpolation is
desired. In general, m ≥ n.

• option: a string, containing either ’nearest’, ’linear’, ’cubic’, ’regression’, or
’cubicpoly’.

The output is

• D: an m-by-1 column vector containing the interpolated displacement data.

Use the MATLAB built-in function interp1 to do the interpolation for the options ’nearest’,
’linear’, and ’cubic’. Additionally, if the content of option is invalid, generate an error
’Option selection is incorrect.’ using the error function.

3 of 10

Assigned: Nov. 4 Fall 2016 Due: Nov. 14

For the options ’regression’ and ’cubicpoly’, perform regression of the data values on a
straight line and a cubic polynomial respectively. That means, you should solve for the coefficients
of the line by representing the problem in the Ax = b form, and evaluate T on the equation
representing the line. Use backslash operator \ to solve for the coefficients.

Include the following test cases in your template file.

begin code

>> t = [0 6 9 21 36 42 57 60]’;

>> d = [1.0 1.2214 1.3499 1.4235 1.4567 1.5217 1.6063 1.6708]’;

>> D1 = myInterpPlotter(t,d, linspace(0,60,100)’, ’nearest’);

>> D2 = myInterpPlotter(t,d, linspace(0,60,100)’, ’linear’);

>> D3 = myInterpPlotter(t,d, linspace(0,60,100)’, ’cubic’);

>> D3 = myInterpPlotter(t,d, linspace(0,60,100)’, ’regression’);

>> D3 = myInterpPlotter(t,d, linspace(0,60,100)’, ’cubicpoly’);

end code

Additionally, you may want to generate a graph of your data points (t versus d) as blue circles)
as well as the interpolated line (T versus D) as a blue solid line to compare the result with Figures
3 to 7 in the Appendix.

Note: The figures will not be graded but they serve as a quick way to check the output of your
function.

3. In this problem you will use interpolation to refine a image. From bcourses, you can download
imdata.mat (class double), which is a 2-D array data storing a image that corresponds to a
sample image. You can show this color image with the following code (13 points)

begin code

load imdata.mat

figure

imagesc(data)

end code

If you want to display the image in black, white, and gray, just add the following command.

begin code

colormap gray

end code

You need developing a function with the following head

begin code

function refinedimagedata = refineimage(imagedata)

end code

where input is the name of the image data file (string), and output is refined image data.

In the function, use built in function interp2 to create interpolated image data. Before using it,
please learn this built-in function yourself and use the ”spline” method to do the 2-D interpolation.

Test your function with the following code

4 of 10

Assigned: Nov. 4 Fall 2016 Due: Nov. 14

begin code

load imdata.mat

figure(1)

imagesc(data)

colormap gray

axis image

axis off

refinedimagedata = refineimage(’imdata.mat’)

figure(2)

imagesc(refinedimagedata);

colormap gray

axis image

axis off

end code

Part 2: Root Finding

4. The spring shock system in automobiles is an example of a real mechanical system which involves
the deflection of nonlinear springs that would demonstrate a damping effect over time (see behavior
response in Figure 2 below). The resistance force of the spring F (N), with respect to time t (s),
is given by the following equation

F (t) = k1(cos (πt))(e
− t
k2π)

where is a k1 and k2 are defined as spring constants (N/s) (24 points).

Figure 2: Damping effect with spring constants k1 = 1000 N/s and k2 = 0.6

5 of 10

Assigned: Nov. 4 Fall 2016 Due: Nov. 14

We will use the above equation to describe the force on a car’s shock system following a speed
bump encountered at t = 0 seconds. We want to find out a time instance near t = 5.5 seconds
when the resistance force F is equal to zero. In order to do that, we need to find the roots of
F (t).

You will find the roots using three different methods. In part (a), you will use the MATLAB
built-in function fzero. In part (b), you will use the Newton-Raphson method. In part (c),
you will use the bisection method.

Write a function damping with the function declaration line

begin code

function S = damping(k1,k2,initial)

end code

The inputs are:

• k 1, k 2: the spring constants defined above.

• initial: the time instance of interest, near which we want to find a root.

The output is:

• S: a 1-by-1 structure array. Its fieldnames and content will be described in detail in the
following subproblems.

In your function, represent F (t) as a function handle stored in variable F. Also, create a variable
tol = 1e-6 which represents the value of the tolerance required for the bisection method and
the Newton-Raphson method.

(a) Use fzero to determine the root of F with initial as the guess location. Store the root
to S in the fieldname fzero root.

(b) Within damping.m, write a subfunction myNewton with function declaration line
begin code

function newton_root = myNewton(f, df, x0, tol)

end code

which will recursively calculate the root nearest to x0 given the function handle f, the
function handle of the derivative of f (which you need to calculate on your own) df, the
initial guess x0, and the tolerance tol.

Store the root found using Newton-Raphson method to S in the fieldname newton.

(c) Within damping.m, write a subfunction bisection with function declaration line
begin code

function bisect_root = bisection(f, a, b,tol)

end code

which will recursively calculate the root located between a and b given the function handle
f, the endpoints of the range a and b, and the tolerance tol.

6 of 10

Assigned: Nov. 4 Fall 2016 Due: Nov. 14

Use a range of ±0.5 (make sure to check the signs of the function evaluated at the endpoints)
and store the root found using bisection method to S in the fieldname bisect root.

The expected output is shown below.

begin code

>> k1 = 1000; k2 = 0.6; initial = 5.5;

>> S = damping(k1,k2,initial)

S =

fzero_root: 5.5000

newton: 5.5000

bisect_root: 5.5000

>> k1 = 1000; k2 = 0.6; initial = 4.97;

S = damping(k1,k2,initial)

S =

fzero_root: 4.5000

newton: 9.5000

bisect_root: 4.5000

end code

5. In physical sciences and electrical engineering, dispersion relations describe the effect of dispersion
in a medium on the properties of a wave traveling within that medium. A dispersion relation relates
the wavelength or wavenumber of a wave to its frequency. For example, for waves propagating
inside the ocean(called internal waves), the dispersion relation can be written as,

f(ω, k) = ω2 − k

a
√

1
ω2 − 1

tan(k

√
1

ω2
− 1) = 0

where ω is the wave frequency, k is the wave number, a is a physical parameter specified by the
ocean conditions.

The equation is transcendental and possesses infinite number of roots at a given frequency ω.
We know that k = nπ

√
ω2/(1− ω2) where n = 1, 2, 3, 4...∞ are approximate solutions to the

equation. For instance, k = π
√
ω2/(1− ω2) and k = 2π

√
ω2/(1− ω2) are very close to the two

solutions in the above equation. Physically n represents different branches of the wave solutions
and is called mode number.(15 points)

(a) You will make use of fzero in Matlab to solve this equation at a given frequency(0 < ω < 1)
and mode number.

begin code

function [k]=DSP(omega,n,a)

end

end code

(b) Plot the first 5 modes(i.e., n = 1, 2, ...5 respectively) in the same figure. Choose ω in
(0.60, 0.99) and a = 0.1. This figure will not be graded.

7 of 10

Assigned: Nov. 4 Fall 2016 Due: Nov. 14

Appendix: Result Figures for Problem 2

Figure 3: Result from nearest interpolation

Figure 4: Result from linear interpolation

8 of 10

Assigned: Nov. 4 Fall 2016 Due: Nov. 14

Figure 5: Result from cubic interpolation

Figure 6: Result from regression

9 of 10

Assigned: Nov. 4 Fall 2016 Due: Nov. 14

Figure 7: Result from cubicpoly

10 of 10

