CS 610 Programming Assignment 2 | Prof. D. Nassimi
Algorithms | Due: Week 10, Wed. Nov. 9 Fall 2016

Given an array A[| of n elements and an integer k in the range [1, n], the function
SELECT (dtype A[], int n, int k)

returns the kth smallest element of the array. (For example, k = 1 is the smallest element, k = n is the
largest, and k = n/2 is the median.) In this programming assignment, you are to implement SELECT
using three different algorithms as described below, and compare their performance in terms of the number
of key comparisons. (Do not perform the key comparisons in-line. Rather, use a function to perform each
key comparison, while incrementing a counter.)

1. SELECT1: Sort the array using Quicksort and pick the kth smallest element. This has average time
complexity of O(nlogn) and worst-case time of O(n?).

2. SELECT?2: Randomized selection. (The textbook calls it Quick-Select, p.246.) This algorithm has
an average time complexity of O(n) and a worst-case time of O(n?).

(a) If n < 25, sort the array using insertion sort, and return the kth element. Otherwise, continue.

(b) Pick a pivot element V' in random and use it to partition the elements into three sets (L, E, G) of
elements less than V', equal to V', and greater than V', respectively. Let the number of elements
in these sets be n1, n2,ng. Use the sizes of these sets to determine where the kth smallest element
falls, and make a recursive call accordingly. That is:

If K <nj then SELECT2 (L, ny, k);
else if k < ny + ng then return (V);
else SELECT?2 (G, ns, k— ny — ng).

3. SELECTS3: Selection algorithm with linear worst-case time, but with a large constant factor. (This
algorithm is discussed in class and is also discussed in exercise C-4.24, p. 254, of the textbook.) The
algorithm is outlined below.

(a) If n < 25, sort the array using insertion sort, and return the kth element. Otherwise, continue.

(b) Divide the set of n elements into subsets (“rows”) of size 5 each, and find the median of each
subset. (If n is not a multiple of 5, the last row will have less than 5 elements.) To find the
median of each row of 5, you can simply use bubble-sort or insertion sort. To avoid the need for
a second array, you can pack the n/5 row-medians in front of the same array as they are found.
(Use swap operations for this packing to preserve all elements.)

(c) Make a recursive call to SELECTS3 to find the median of the n/5 row-medians.

(d) Use this median-of-medians as the pivot V' to partition the array of n elements into three sets as
before. Then make a recursive call to SELECT3 for either the left or right partition as needed.

Run experiments for the following values of n: 10 000, 100 000, and 1000 000. For each value of n, produce
an array of randomly generated elements. (You may use integers.) Then use each of the three methods to
find the kth smallest element for k¥ = n/2, and print one line result:

Algorithm X: n, k, A[k], Number of Key-Comparisons.

(Be sure the same original array of n elements is used for all three methods.) Tabulate the performance
results for the three algorithms. Explain how the results compare with the expected analytical results, and
how the three algorithms compare against each other.

For example, according to the analysis, SELECT3 is expected to run in O(n) time. Does the experimental
results confirm an O(n) running time? If so, what is the constant factor and how does it compare with the
other algorithms?

Hand-in a hard copy of the sourse code, produced output, tabulated results, and the concluding discussion.
In addition, Email your source code and tabulated results to the TA.

Notes on All Programming Assignments
(CS 610, Prof. Nassimi)

1. Your program must be in either C, C++, C#, or JAVA.

2. You must include useful documentation. (Don’t go overboard in commenting. Your comments must
be concise and helpful.)

3. Your program must run on an AFS computer (NJIT Unix-based) using either “gec” or “g++”
compiler. (You may develop your program initially on any convenient platform. Then, in the final
phase, test your program on an AFS machine and make sure it runs properly.)

4. E-mail your source code to our TA by the due date, at least two hours prior to the
beginning of the class period.

(a) E-mail Body:

e Your Name;

Course and Section Number;
e Assignment Number;
e Any special instructions/comments about running your program;

e Problems: If your program is not fully running, indicate to what extend it runs and where
it has problems.

(b) File Attachments:

e Source code of your program;
e Input file(s);
e Output produced by your program.

5. Hand in a Paper Copy, at the beginning of the class period on the
due date. (The paper copy must include the following items, all handed in together, and properly
stapled together.)

Source code of your program;

b) Input file(s);

(c

(d) A brief description of the algorithm, and its time complexity analysis (if needed).

(a
(

Output produced by the program;

)
)
)
)

