

 Q1) Write an MPI program to multiply two 3x3 matrices (AxB). Use four processors, one processor acts
as a master/server. All worker processors will have a copy of Matrix A. The master processor will send
one column from matrix B to each processor. Each processor calculates one column of the result matrix
and sends it back to the master. The master prints out the result. Use collective communications.
Q2) Write an MPI program to multiply 100x100 matrices (AxB). Use four processors, one acts as a
master. The master processor will manage the process of multiplication. It will be waiting for workers to
send a ready message. Once the master receives a ready message, it will send one row and one column
to be multiplied. Once the worker finishes, it sends the result back to master and asks for another row
and column. This continues until the result matrix is calculated. The master then prints the time taken to
finish this process. Use collective communications.
Q3) Update questions 2 above such that a copy of matrices A and B are saved in all processors and the
master only sends the indices of the row and column to be multiplied. The master reports the time
when the process is done.
Q4) Generate an array (5x5) of integers using random numbers. Use 10 processors. Split the processors

into two groups, even and odd processors. Distribute the array to both groups. Each processor in the

odd group should find the minimum value for one row, the even group the maximum value of one

column. Use MPI_Reduce operation to find the minimum and maximum value on one processor and

prints them out.

Q5) In sorting problem, sorting algorithm puts the elements of a list in a certain order either ascending
or
descending. In this project, you are asked to parallelize some of comparison-based sorting algorithms.
Some comparison-based sorting algorithms perform exchange of adjacent elements repeatedly to
produce the sorted list. On the other hand, some other comparison-based algorithms divide the list into
two sub-lists and sort these sub-lists recursively. This technique is called divide and conquer.
Comparison-based exchange algorithms are usually slower than divide and conquer algorithms.
Examples of exchange algorithms are bubble sort, insertion sort, and selection sort. Popular examples of
divide and conquer algorithms are quick sort and merge sort.
Parallelizing sorting algorithms is not a trivial process due to data dependency. In this project we will try
to parallelize two algorithms (one from each approach) and compare between the performance of the
sequential version and the parallel version of these algorithms. We will try to parallelize selection sort
from exchange category and quick sort from divide and conquer category. The parallelizing of the
algorithms can be done in three main steps. Distribution step, where a master/server process generates
a large random array and distributes it evenly to slave/client processes. Sorting step, where each
slave/client processor sorts its sub-list. Finally, Merge process, where processors exchange their sub-list
in a merge-fashion and send them back to the master/server processor.
Here are the main steps in pseudo code for your parallelizing project.

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑆𝑜𝑟𝑡𝑖𝑛𝑔(𝑛)

1. 𝑚𝑎𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑎 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑛 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1 𝑎𝑛𝑑 1000

2. 𝑚𝑎𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑡1

3. 𝑚𝑎𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑠/𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡 𝑡𝑜 𝑎𝑙𝑙 𝑠𝑙𝑎𝑣𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑖𝑡𝑠𝑒𝑙𝑓

4. 𝑠𝑙𝑎𝑣𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 𝑠𝑜𝑟𝑡 𝑡ℎ𝑒 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

5. 𝑖𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑖𝑑 𝑖𝑠 𝑒𝑣𝑒𝑛

6. 𝑠𝑒𝑛𝑑 𝑒𝑣𝑒𝑛 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑖𝑑 + 1

7. 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑜𝑑𝑑 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡 𝑓𝑟𝑜𝑚 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑖𝑑 + 1

8. 𝑚𝑒𝑟𝑔𝑒 𝑡𝑤𝑜 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡𝑠

9. 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑒𝑣𝑒𝑛 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑟𝑔𝑒𝑑 𝑙𝑖𝑠𝑡

10. 𝑒𝑙𝑠𝑒

11. 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑒𝑣𝑒𝑛 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡 𝑓𝑟𝑜𝑚 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑖𝑑 − 1

12. 𝑠𝑒𝑛𝑑 𝑜𝑑𝑑 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑖𝑑 − 1

13. 𝑚𝑒𝑟𝑔𝑒 𝑡𝑤𝑜 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡𝑠

14. 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑜𝑑𝑑 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑟𝑔𝑒𝑑 𝑙𝑖𝑠𝑡

15. 𝑠𝑙𝑎𝑣𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑠𝑒𝑛𝑑 𝑡ℎ𝑒𝑖𝑟 𝑠𝑢𝑏 − 𝑙𝑖𝑠𝑡𝑠 𝑡𝑜 𝑚𝑎𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

16. 𝑚𝑎𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑡2

17. 𝑚𝑎𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑟𝑖𝑡𝑒𝑠 𝑜𝑢𝑡 𝑡ℎ𝑒 𝑠𝑜𝑟𝑙𝑒𝑑 𝑙𝑖𝑠𝑡 𝑎𝑛𝑑 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑡2 − 𝑡1

𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝑜𝑟𝑡𝑖𝑛𝑔(𝑛)

1. 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑛 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1 𝑎𝑛𝑑 1000

2. 𝑟𝑒𝑐𝑜𝑟𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑡1

3. 𝑠𝑜𝑟𝑡 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡 𝑢𝑠𝑖𝑛𝑔 𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

4. 𝑟𝑒𝑐𝑜𝑟𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑡2

5. 𝑤𝑟𝑖𝑡𝑒 𝑜𝑢𝑡 𝑡ℎ𝑒 𝑠𝑜𝑟𝑡𝑒𝑑 𝑙𝑖𝑠𝑡 𝑎𝑛𝑑 𝑟𝑒𝑝𝑜𝑟𝑡 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡2 − 𝑡1

