ENSC 251 - Fall 2016 — Course Project Part 1

Copyright © 2016 School of Engineering Science, Simon Fraser University

Due: September 25, 2016, 9:00 pm

In this part of the course project, you will be implementing a basic tokenizer for a subset
of C language that can convert a sequence of characters passed to the actual compilation
stage of a C compiler (or rather a compiler for our subset of C language) into a sequence
of strings each holding a C-language token. Any remaining preprocessing directives in
the input should be stripped out. For an overview of the stages of building a C language
program, see:

https://calleerlandsson.com/the-four-stages-of-compiling-a-c-program/

for more information on the preprocessor, see:

https://gcc.qnu.org/onlinedocs/cpp/Preprocessor-Output.html

A token, for the purposes of this Course Project and in a syntactically correct program, is
defined as the smallest number of consecutive characters that can be surrounded by

whitespace without changing the functionality of the code.

“Space, tab, linefeed, carriage-return, formfeed, vertical-tab, and newline characters are
called "white-space characters" because they serve the same purpose as the spaces
between words and lines on a printed page — they make reading easier. Tokens are
delimited (bounded) by white-space characters and by other tokens, such as operators and

punctuation.” https://msdn.microsoft.com/en-us/library/e9a023cx.aspx

“The punctuation and special characters in the C character set have various uses, from
organizing program text to defining the tasks that the compiler or the compiled program
carries out. They do not specify an operation to be performed. Some punctuation symbols
are also operators (See Operators). The compiler determines their use from context.”

https://msdn.microsoft.com/en-us/library/eb1htwOt.aspx

https://calleerlandsson.com/the-four-stages-of-compiling-a-c-program/
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://msdn.microsoft.com/en-us/library/e9a023cx.aspx
https://msdn.microsoft.com/en-us/library/y0c1cfax.aspx
https://msdn.microsoft.com/en-us/library/eb1htw0t.aspx

String literals are a type of token. You will have to research what they and character
literals can look like. Hint: here is a link with a useful tool to add and remove escape
characters from a string: http://www.freeformatter.com/java-dotnet-escape.html --it
should be valid for C-language too.

Our subset of C language will use the following punctuators:

1. (- opening parenthesis
2.) -closing parenthesis
3. : -colon

4. ; -semicolon

5. * -indirection

Here is the list of operators for our subset of C language:

Category

Postfix

Unary

Divisive

Additive

Shift

Conditional Operator

Assignment

Operator

++--

<K >>

= 4= = *= [= U= >>= <<= &= "= |:

Associativity

Left to right

Right to left

Left to right

Left to right

Left to right

Right to left

Right to left

http://www.freeformatter.com/java-dotnet-escape.html

For example,
sum = 3+2;

can be split into the following set of tokens:

sum = 3 + 2 X

"When the compiler interprets tokens, it includes as many characters as possible in a single token
before moving on to the next token. Because of this behavior, the compiler may not interpret tokens
as you intended if they are not properly separated by white space. Consider the following expression:
i+++]

In this example, the compiler first makes the longest possible operator (++) from the three plus signs,
then processes the remaining plus sign as an addition operator (+). Thus, the expression is interpreted
as (i++) + (j), not (i) + (++J)." https://msdn.microsoft.com/en-us/library/44kh05a0.aspx

A template including the required function for you to implement has been provided. You
may implement any other helper functions, but you are not allowed to remove or change
the structure of the function ‘tokenizeCodeStrip’.

Take care with floating point numbers. For example, 1.575E1 is equivalent to 15.75. So,
“1.575E1” 1s one token.

Refer to the BNF text files in the provided template. They contain Backus-Naur Form
(BNF) grammars for our project.

Note, when testing your code we may use some tests that are correct according to our C-
subset grammar, some tests that include things not present in the grammar (like operators
or punctuators not present in the grammar), and some tests that have other sorts of errors
(like unterminated strings). When you find something not included in our subset
grammar, including unterminated strings, issue a warning, ignore the problematic
characters, push an empty string onto the back of the vector of strings to be returned, and

then continue on tokenizing the remaining characters.

INSTRUCTIONS FOR SUBMITTING YOUR CODE:

e Do not modify the names of the .cpp files given to you.

https://msdn.microsoft.com/en-us/library/44kh05a0.aspx

