
CSCI 1300/1310 - Assignment 4	 	 	 Due	Friday,	Sept	23,	by	12:30	pm
	

CSCI 1300/1310 Introduction to Computer Programming
Instructors: Knox/Hoenigman
Assignment 4
Due	Friday,	Sept	23,	by	12:30	pm	
	
For	this	assignment,	the	solution	for	all	problems	should	be	in	a	file	called	
Assignment4_LastName.cpp,	where	LastName	is	your	last	name.	Please	include	
comments	in	your	code	that	explain	what	your	code	is	doing.	The	comments	should	
also	include	your	name,	recitation	TA,	and	the	assignment	number.	
	

Measuring DNA Similarity
DNA	is	the	hereditary	material	in	human	and	other	species.	Almost	every	cell	in	a	
person’s	body	has	the	same	DNA.	All	information	in	a	DNA	is	stored	as	a	code	in	four	
chemical	bases:	adenine	(A),	guanine	(G),	cytosine	(C)	and	thymine(T).	Different	
order	of	these	bases	means	different	information.
	
One	of	the	challenges	in	computational	biology	is	determining	what	the	codons	in	a	
DNA	sequence	represent.	A	codon	is	a	sequence	of	three	nucleotides	that	form	a	unit	
of	genetic	code	in	a	DNA	or	RNA	molecule. For	example,	given	the	sequence	GGGA,	
the	codon	could	be	a	GGG	or	a	GGA,	depending	on	where	the	gene	begins	and	the	
active	bases	in	the	gene.	Clues	about	how	to	interpret	a	DNA	sequence	can	be	found	
by	comparing	an	unknown	DNA	sequence	to	a	known	sequence	and	measuring	their	
similarity.	If	sequences	are	similar,	then	it	can	be	hypothesized	that	they	have	
similar	functions	and	proteins.
	
Assignment	Details:	
In	this	assignment,	you	will	develop	a	few	functions	for	DNA	analysis.	These	
functions	will	calculate	common	measures	of	DNA	similarity,	such	as	the	Hamming	
distance	and	the	Best	Match	Hamming	distance	between	two	DNA	sequences.	Each	
of	the	DNA	sequences	you	need	for	this	assignment	can	be	copied	from	this	write-up	
and	stored	in	a	variable	in	your	program.	There	is	a	sample	DNA	sequence	for	a	
mouse,	human,	and	an	unknown	species.	Your	mission	is	to	determine	the	identity	
of	the	unknown	by	comparing	it	to	the	human	and	the	mouse.	If	the	unknown	
species	is	more	similar	to	the	human	than	it	is	to	the	mouse,	then	you	can	conclude	
that	the	unknown	sequence	is	from	a	human.	Otherwise,	you	can	conclude	that	the	
unknown	is	from	a	mouse.	
	
Your	assignment	needs	to	include	at	least	the	following	functions	for	full	credit:	
	
void calculateSimilarity(int *similarity, string DNA1, string DNA2);
	
void calculateBestMatch(int *distance, int *index, string DNA1, string
DNA2);
			
	

CSCI 1300/1310 - Assignment 4	 	 	 Due	Friday,	Sept	23,	by	12:30	pm
	

	
Hamming	distance	and	similarity	between	two	strings
Hamming	distance	is	one	of	the	most	common	ways	to	measure	the	similarity	
between	two	strings	of	the	same	length.	Hamming	distance	is	a	position-by-position	
comparison	that	counts	the	number	of	positions	in	which	the	corresponding	
characters	in	the	string	are	different.	Two	strings	with	a	small	Hamming	distance	
are	more	similar	than	two	strings	with	a	larger	Hamming	distance.	

Example:
first	string	=	“ACCT”
second	string	=	“ACCG”
A	C	C	T
|			|			|		*
A	C	C	G

In	this	example,	there	are	three	matching	characters	and	one	mismatch,	so	the	
Hamming	distance	is	one.		
	
The	similarity	score	for	two	sequences	is	then	calculated	as	follows:
	

similarity_score	=	(string	length-hamming	distance)	/	string	length

similarity_score	=	(4-1)/4=3/4=0.75	

	
Two	sequences	with	a	high	similarity	score	are	more	similar	than	two	sequences	
with	a	lower	similarity	score.	
	
The	Best	Match	algorithm	extends	the	Hamming	distance	calculation	by	finding	the	
best	overlap	of	the	two	strings	using	the	Hamming	distance	calculation.	For	any	two	
strings,	calculate	the	Hamming	distance	between	the	string	and	substring	starting	at	
each	position	of	the	string.		
	
calculateSimilarity(double*,	string,	string)	
The	calculateSimilarity()	function	should	take	two	arguments	that	are	both	strings	
and	an	double	pointer	that	stores	the	similarity	between	the	strings.	You	can	declare	
a	double	pointer	just	as	you	would	an	integer	pointer:	
	
double x;
double *dPtr = &x;
	
The	function	should	calculate	the	similarity	score	for	the	two	strings	and	update	the	
similarity	int	with	that	score.	
	
Note:	when	you	test	calculateSimilarity(),	pass	in	strings	where	you	can	calculate	the	
similarity	by	hand	before	passing	it	real	data.	That	will	help	you	identify	errors	in	
your	algorithm.		

CSCI 1300/1310 - Assignment 4	 	 	 Due	Friday,	Sept	23,	by	12:30	pm
	

	
calculateBestMatch(int*,	int*,	string,	string)	
The	calculateBestMatch()	function	should	take	four	arguments	-	two	integer	
pointers	and	two	strings.	The	integer	pointers	store	the	Hamming	distance	
calculation	and	the	index	in	the	string	where	the	best	match	starts.	The	two	string	
arguments	are	the	two	strings	to	compare.	The	second	string	argument	is	the	
substring	to	search	for.	The	first	string	is	the	string	you	are	searching.		
	
Note:	you	will	need	to	be	aware	of	the	end	of	each	string	to	make	sure	that	you	don’t	
loop	off	the	end	of	either	string.	
	
Functionality	in	main()	
In	your	main()	function,	you	will	need	to	call	the	other	functions	you	have	written	
passing	in	the	DNA	samples	shown	below	in	this	write-up.		You	should	output	the	
result	of	the	function	calls	in	the	main()	function.	After	calling	calculateSimularity(),	
you	need	to	output	the	identity	of	the	unknown	DNA	sequence.	
	
If the unknownDNA is more similar to the humanDNA

print “Human”
Else If the unknownDNA is more similar to the mouseDNA

print “Mouse”
Else unknownDNA is equally similar to both mouse and human

print “Identity cannot be determined.”

Before	calling	calculateBestMatch(),	you	need	to	prompt	the	user	for	a	search	string.	
For	example,	if	you	want	to	compare	the	search	string	to	the	mouse	DNA,	you	would	
do	something	like	the	following:		

cout<<”Enter a substring:;
getline(cin, subStr);
calculateBestMatch(hamDist, index, mouse, subStr);
	
After	calling	calculateBestMatch(),	you	need	to	display	the	DNA	sequence	that	is	the	
best	match	as	well	as	the	best	match	score.	If	there	isn’t	a	match	longer	than	one	
character,	print	“Match not found.”

Other	helpful	hints	
Write	the	code	without	pointers	first.	Once	you	are	confident	that	your	algorithms	
are	correct,	modify	your	functions	to	use	pointers.	
	
DNA	samples	
Use	the	following	human,	mouse,	and	unknown	DNA	strings	in	your	program.	
	
humanDNA =
"CGCAAATTTGCCGGATTTCCTTTGCTGTTCCTGCATGTAGTTTAAACGAGATTGCCAG
CACCGGGTATCATTCACCATTTTTCTTTTCGTTAACTTGCCGTCAGCCTTTTCTTTGAC

CSCI 1300/1310 - Assignment 4	 	 	 Due	Friday,	Sept	23,	by	12:30	pm
	

CTCTTCTTTCTGTTCATGTGTATTTGCTGTCTCTTAGCCCAGACTTCCCGTGTCCTTTC
CACCGGGCCTTTGAGAGGTCACAGGGTCTTGATGCTGTGGTCTTCATCTGCAGGTGTCT
GACTTCCAGCAACTGCTGGCCTGTGCCAGGGTGCAGCTGAGCACTGGAGTGGAGTTTTC
CTGTGGAGAGGAGCCATGCCTAGAGTGGGATGGGCCATTGTTCATG"
	
mouseDNA =
"CGCAATTTTTACTTAATTCTTTTTCTTTTAATTCATATATTTTTAATATGTTTACTAT
TAATGGTTATCATTCACCATTTAACTATTTGTTATTTTGACGTCATTTTTTTCTATTTC
CTCTTTTTTCAATTCATGTTTATTTTCTGTATTTTTGTTAAGTTTTCACAAGTCTAATA
TAATTGTCCTTTGAGAGGTTATTTGGTCTATATTTTTTTTTCTTCATCTGTATTTTTAT
GATTTCATTTAATTGATTTTCATTGACAGGGTTCTGCTGTGTTCTGGATTGTATTTTTC
TTGTGGAGAGGAACTATTTCTTGAGTGGGATGTACCTTTGTTCTTG"

unknownDNA =
"CGCATTTTTGCCGGTTTTCCTTTGCTGTTTATTCATTTATTTTAAACGATATTTATAT
CATCGGGTTTCATTCACTATTTTTCTTTTCGATAAATTTTTGTCAGCATTTTCTTTTAC
CTCTTCTTTCTGTTTATGTTAATTTTCTGTTTCTTAACCCAGTCTTCTCGATTCTTATC
TACCGGACCTATTATAGGTCACAGGGTCTTGATGCTTTGGTTTTCATCTGCAAGAGTCT
GACTTCCTGCTAATGCTGTTCTGTGTCAGGGTGCATCTGAGCACTGATGTGGAGTTTTC
TTGTGGATATGAGCCATTCATAGTGTGGGATGTGCCATAGTTCATG"

	
Additional	practice	problems:	
If	you	are	interested	in	additional	problems	for	practice,	here	are	a	few	more	
problems	you	can	work	on.	We	won’t	be	grading	them,	but	a	little	extra	practice	
never	hurt	anyone.		
	
Complement	sequence	function	
DNA	is	double	stranded	even	though	we	always	write	a	single	strand’s	nucleotide	
sequence.		This	is	because	we	can	infer	the	other	stands	sequence	from	the	given	
strand.		Every	A	on	one	strand	has	a	complementary	T	on	the	opposite	strand	(every	
C	has	a	G).		Therefore	we	can	create	the	complement	strand	by	swapping	the	
nucleotides	with	the	complementary	nucleotide.		Create	a	function	to	take	the	
sequence	and	produce	the	complement	sequence.	
	
Reverse	complement	sequence	function	
You	now	have	the	complement	strand,	but	the	DNA	is	read	in	the	forward	direction	
for	the	given	strand	and	in	the	reverse	direction	for	the	complementary	strand.		
Therefore,	we	must	reverse	the	strand	(first	character	becomes	the	last	character,	
second	becomes	second	to	last,	and	so	on.)	to	print	it	correctly.		Create	a	function	to	
reverse	the	complement	of	a	given	DNA	sequence.	Now	we	can	search	both	strands	of	
the	given	DNA	sequences	by	using	our	previously	created	functions.	
	

