Computer Laboratory 1
CscrI 1913: Introduction to Algorithms,
Data Structures, and Program Development
Tuesday—Wednesday, September 13—-14, 2016

0. Introduction.

It’s possible to solve an equation numerically, by substituting numbers for its variables.
It’s also possible to solve an equation symbolically, by using algebra. For example, to solve
the equation m x x+b = y symbolically for x, you’d first subtract b from both sides, giving
m X x = y—>b. Then you’d divide both sides by m, giving x = (y—b) / m. You may assume
that no variable is equal to zero.

In this laboratory exercise, you’ll write a Python program that uses algebra to solve
simple equations symbolically. Your program will use Python tuples to represent equations,
and Python strings to represent variables. To simplify the problem, the equations [will'tisé
only the binary arithmetic operators ‘+’, ‘=7, ‘x’, and ‘/’. Also, your program need only
solveNoRaNaNabIc Rt appeaISIcXact I IoHCONIaIISGRATIONNY our program will use ideas

from thelconstant expressionévaluaton that I discussed in the lecture.
1. Theory.

Here’s a mathematical description of how your program must work. First, L — R means
that an equation L is algebraically transformed into a new equation R. For example:

A+B=C — B=C-4A

Second, a variable is said to be inside an expression if it appears in that expression at least
once. For example, the variable z is inside the expression m x x + b, but it isn’t inside the
expression u — v. Each variable is considered to be inside itself, so that x is inside x.
Now suppose that Ao B = C' is an equation, where A, B, and C are expressions, and
o is one of the four binary arithmetic operators. Also suppose that the variable z is inside
either A or B. Then the following rules show how this equation can be solved for .

A=C —-B 1if zisinside A

A+B:C_>{B:C—A if x is inside B (1)
A== {7000 T e @
Axmoeo [AG)B e s g
4/8=0 {52070 it mide 5)

For example, I can use the rules to solve the equation m x x +b =y for . In Rule 1, A
is m x x, and B is b. Since z is inside A, I can transform the equation to m x x = y — b.
Then in Rule 3, A is m, and B is z. Since x is inside B, I can transform the equation to
x = (y —b)/m. Now z is alone on the left side of the equal sign, so the equation is solved.
This solution used only two rules, but a more complex equation might use more rules, and
it might use rules more than once.

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

2. Representation.

Your program must represent operators and variables as Python strings. For example,
it must represent the variable z as the string 'x'. It must also represent equations and
expressions as Python tuples with three elements each. For example, it must represent the
expression a + b as the Python tuple ('a', '+', 'b'). These tuples can be nested, so
that the equation m x x + b = y is represented like this:

(((Iml’ l*l, IXI), |+l, Ibl), |=|’ Iyl)

I've used an asterisk '*' as the multiplication operator. If you ignore the parentheses,
commas, and quotes, then this tuple looks much like how you’d write the original equation.
It’s helpful to define functions left, op, and right that return the parts of tuples that
represent expressions.

def left(e):
return e[0]

def op(e):
return e[1]

def right(e):
return e[2]

For example, if e is the tuple ('a', '+', 'b'), then left(e) returns 'a', op(e) returns
'+' and right(e) returns 'b'.

3. Implementation.

Your program must define the following Python functions, and those functions must behave
as described here. You must use the same function names as I 'dg—this will make your
program easier to grade. However, you need not use the same parameter names as I do.
Your functions cannot change elements of the tuples that are passed to them as arguments,
because tuples are immutable. Each function is worth 5 points, so the whole program is
worth 35 points.

e isInside(v, e). Test if the variable v is inside the expression e. It’s inside if (1) v
equals e, or (2) v is inside the left side of e, or (3) v is inside the right side of e. This
definition is recursive. Other functions in your program will need to call isInside.
Hint: Don’t use the Python operator in when you write this function: it doesn’t do
what you want.

e solve(v, q). Solve the equation q for the variable v, and return a new equation in
which v appears alone on the left side of the equal sign. For example, if you call solve
like this:

SOlVQ('X', (((lml, |*|, 'X'), |+|’ 'b'), |=|, Iyl))
then it will return this:
(IXI’ |=v, ((|yv’ l_l, lbl), l/l’ |mv))

2

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

The function solve really just sets things up for the function solving, which does all
the work. If v is inside the left side of q, then call solving with v and q. If v is inside
the right side of q, then call solving with v and a new equation like q, but with its
left and right sides reversed. In either case, return the result of calling solving. If v
is inside neither side of g, then return None, which will probably cause an error.

e solving(v, q). Whenever this function is called, the variable v must be inside the
left side of g. If v is equal to the left side of g, then the equation is solved, so simply
return q. Otherwise, decide which of the four transformation rules (from Section 1)
must be used next to solve q. Call the function that implements that rule on v and q,
then return the result.

e solvingAdd(v, q). Use rule 1 to transform the equation g, then call solving on the
variable v and the transformed q. Return the result of calling solving.

e solvingSubtract(v, q). Use rule 2 to transform the equation q, then call solving
on the variable v and the transformed q. Return the result of calling solving.

e solvingMultiply(v, q). Use rule 3 to transform the equation g, then call solving
on the variable v and the transformed q. Return the result of calling solving.

e solvingDivide(v, q). Use rule 4 to transform the equation g, then call solving on
the variable v and the transformed q. Return the result of calling solving.

The functions solvingAdd, solvingSubtract, solvingMultiply, and solvingDivide will
have very similar definitions. If you can write one of these functions, then you can also
write the other three. You need not write any kind of user interface that reads equations
from the keyboard, or writes equations to the display. Instead, just call the function solve
directly with a nested tuple that represents an equation.

4. Tests.

The file tests.py on Moodle contains a series of tests. Each test calls a function from your
program, then prints what the function returns. It is followed by a comment that tells what
must be printed if the function works correctly. While you’re writing your program, you
can use these tests as examples of what the functions are supposed to do.

5. Deliverables.

Run the tests in tests.py. Also test solve on at least one equation of your own design.
Then turn in (1) your program, (2) the tests, and (3) the results of the tests. Your TA will
tell you how and where to turn them in. If your lab is on Tuesday, then your work must
be turned in by midnight on Tuesday, September 20, 2016. If your lab is on Wednesday,
then your work must be turned in by midnight on Wednesday, September 21, 2016.

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

Ahmed Suliman

