

CS 477/677 Analysis of Algorithms

Homework 2

Due September 20, 2015

1. (U & G-required) [30 points] Consider the following algorithm.

```
ALGORITHM Enigma(A[0..n - 1])
//Input: An array A[0..n - 1, 0..n - 1] of integer numbers
for i  $\leftarrow$  0 to n - 2 do
    for j  $\leftarrow$  i + 1 to n - 1 do
        if A[i] = A[j]
            return false
    return true
```

- a) [5 points] What does this algorithm do?
- b) [25 points] Compute the running time of this algorithm.

2. (U & G-required) [30 points]

Solve the following recurrences using the method of your choice.

a) [15 points] $T(n) = 7T\left(\frac{n}{2}\right) + n^2$

b) [15 points] $T(n) = T\left(\frac{9n}{10}\right) + n$

3. (U & G-required) [40 points]

Consider the following recursive algorithm for computing the sum of the first n cubes:

$$S(n) = 1^3 + 2^3 + \dots + n^3$$

```
ALGORITHM S(n)
// Input: A positive integer n
// Output: The sum of the first n cubes
if n = 1
    return 1
else
    return S(n - 1) + n * n * n
```

- a) [20 points] Write and solve a recurrence relation for the number of multiplications made by this algorithm and solve it.
- b) [20 points] How does this algorithm compare with the straightforward non-recursive algorithm for computing this function?

4. (G-Required) [20 points]

Consider the following recursive algorithm:

ALGORITHM $Q(n)$

```
// Input: A positive integer n
if n = 1
    return 1
else
    return  $Q(n-1) + 2n - 1$ 
```

- a) [10 points] Set up a recurrence relation for this function's values and solve it to determine what this algorithm computes.
- b) [10 points] Set up a recurrence relation for the number of multiplications made by this algorithm and solve it.

Extra credit

5. [20 points] Solve the following recurrence using the method of your choice:

$$T(n) = T(\sqrt{n}) + 1$$

Hint: think iteration.