#Rrofded(X Dt M = l%(% Dxternpie X (3K dd BA). Kee thy ial?Xs Kis trd€ ipgedral? W
th Xt in genytal, pygve X KndE, pEvided coudieredgmpi,
*Problem 10.

Suppose we want to approximate the derivative of a function f(z) that is sampled on the grid z1,...,z,

where x;41 = z; + . Then we might do so using the expression

5f(55)| ~ f(@ip1) — flz:)
O T)
When ¢ = 1, this yields
df(x
fai) = 5.1)\z:wi ~ f(ziv1) = flzi).
We can express this relation via a matrix-vector product where
f(z1) f(x1)
frx2) | f(w2)
f'(wn) fzn)
where D,,, is the so-called first difference matrix between and is given by
L -
-1 1
-1 1
- 1 71_
Note that setting
Dnn(na 1) =1,

corresponds to the approximation

This is referred to as a periodic differentiation rule which is associated with a periodic boundary conditon
because we are assuming that the domain wraps around. Notice that D, is a circulant matrix and so its
eigenvectors can be computed in closed form!

The goal of this exercise is to derive the analog of D, for 2-D differentiation. To that end, let f(x,y) be a

function of two variables. We can approximate its partial derivatives using finite differences as follows:

3f(x,y) ~ f(x+1,y)—f(a:,y)

(2) Ox - (r+1)—=x
= f(x—l-Ly)—f(x,y)

af(x’y) ~ f(x,y—i—l)—f(x,y)

(3) oy (y+1)—y
= f(x,y+1)7f(1'7y)a

To simplify notation, let us define the m x n MATLAB matrices FXY, DFDX, and DFDY such that

FXY(1i,3) = f(i,])

. _Of@,))

(4) DFDX(i,j) = aﬁ$1
DFDY(i,j) = ‘iifL

and the mn x 1 MATLAB vectors fxy, dfdx, and dfdy such that

fxy = FXY(:)
(5) dfdx = DFDX(:)
dfdy = DFDY(:)

With this notation, we can succinctly express equations and as

(6)

dfd
[* = A x fxy

dfdy

For some 2mn x mn matrix A. We can express A in terms of the first differences matrix.

Find an expression for A in terms of the first difference matrix using only the first difference matrix, the
identity matrix, and the Kronecker product.

Hint: try it for m = n = 3 first.

Once you have determined what A is, write a MATLAB function called hw2p10.m or a Python function called
hw2p10.py that takes as input the dimensions m and n of FXY and returns the appropriate A matrix where
A is a sparse matrix.

Your MATLAB function should have signature:

function A = hw2pl0 (m,n)

and your Python function should have signature:

def hw2pl0 (m,n):
Your code here

return A

The matrix A can be gigantic. For example, suppose m = 550 and n = 430, then A is a 709,500 x 236, 500
matrix that would require 1.2 TB of RAM if stored as a full double precision matrix! However, A has only
4mn non-zero entries, so it is very sparse.

It is not uncommon to have matrices with a large number of zero-valued elements and, because the MATLAB
and Python store zeros in the same way it stores any other numeric value, these elements can use memory
space unnecessarily and can sometimes require extra computing time.

Sparse matrices provide a way to store data that has a large percentage of zero elements more efficiently.
While full matrices internally store every element in memory regardless of value, sparse matrices store only
the nonzero elements and their row indices. Using sparse matrices can significantly reduce the amount of
memory required for data storage.

See:
http://www.mathworks.com/help/matlab/ref/spdiags.html

for how to create sparse banded matrices.

Thus, for example:

http://www.mathworks.com/help/matlab/ref/spdiags.html

n=>5

(0]
[

= ones(n,1);

A = spdiags([e e], [-1 1], n, n);

Creates the following matrix:

A =

[15
N
w
e e e e e e

where all other entries are then 0. Similarly:

I = spdiags(ones(n,1),0);

Creates the identity matrix in sparse format.

The analogous commands in python are:

import numpy as np

from scipy.sparse import spdiags
n=>5

e = np.ones (n)

A = spdiags([e, el,[-1,1],n,n)

I = spdiags(e,0,5,5)

More information on these commands can be found at:
http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spdiags.html

We will return to this A matrix in a later homework.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spdiags.html

