Laboratory 4
60-212

Objectives:

1 To understand how to use command line arguments.
1 To understand arrays in Java.

1 To write a static method that returns an array.

Download the partially defined class Lab4 from the course website. At the moment this contains
only a main method.

Work to be done

a)

b)

Set the command line arguments as follows:

25 xyz +39 -43 abc “+ 86” 34a6

This means your command line arguments are “25”, “xyz”, “+39”, “-43”, “abc”,

“+ 86” and “34a6”

(Note: See instructions below on how to set command line arguments using Eclipse).
Write a method extractValidNumbers which has an array of strings as its parameter. Note
that main calls extractVValidNumbers using the array of command line arguments as the
parameter. The method should return an array of int. The partial class definition |
supplied does not include method extractValidNumbers which is your responsibility.

Hint: the method header can be as follows:
private static int[] extractValidNumbers(String commandLineArguments[])

(Questions you should be able to answer - why is the method private? Is that better than
public? Why is the method static? What does it mean when the return type for the
method is int[]?)

c) Develop the body of the method extractValidNumbers, so that the method

checks, using a regular expression, each command line argument to find if the
command line argument may be converted to an int. A command line argument
may be converted to an int if the command line argument consists of an optional
sign (i.e., + or -) followed by one of more digits. Some valid command line
arguments that may be converted to an int are given below:

25

-432

+5362

Some invalid arguments are as follows:

Abc

43x

“+ 657

For the command line arguments shown below, notice that “25”, “+39”, “-43”
may be converted to int.

25 xyz +39 -43 abc “+ 86” 34a6

The remaining arguments may not be converted to int.

creates an array of int which will contain the int values corresponding to all
command line arguments that may be converted to int. The method should return
this array. This array of int should be completely filled with the int values that
you computed from the command line arguments.

Hint: Integer.parselnt(s) returns the int value corresponding to the string s.

For instance, if the command line arguments are as follows:

25 xyz +39 -43 abc “+ 86” 34a6

the array returned by the method should have 3 elements, containing 25, 39 and
-43.

d) Make sure, using the main method that | supplied, that the output you get is as follows:
result[0] =25
result[1] =39
result[2] =-43

Reminder: If you forget to specify the command line arguments, your program will not
give any output. (Why?)

Quick tutorial on how to set command line arguments using Eclipse
Consider the following class Test which | defined under project LabAssign4 and package la4.:

public class Test {
public static void main(String a[]){
for (inti =0; i <a.length; i++){
System.out.printin("a[" + 1 + "] =" + a[i]);
}

¥

Method main simply displays the values stored in the array a, the parameter of main. These
values are called the command line arguments. You can specify, using Eclipse the values of the
command line arguments in the following way.

1) Select Run, and then Run Configuration, giving the following window:

T

Create, manage, and run configurations

¢

Run a Java application

5 [—+I
U &= *l = MName: Lab4
type filter text (2 Main . 9= Arguments| =4 JRE| % Classpath| B+ Source| B Environment| & Common
& Eclipse Application Project:
0 Java Applet .
4 [T Java Application LabHomeAssignmentl
0] Labd Main class:
3] Welcome
Ju CustornerTest []Include system libraries when searching for a main class
Jti JUnit Plug-in Test [|Include inherited mains when searching for a main class
4 05Gi Framework [stop in main
Appl Revert
Filter matched 9 of 9 items [PRl] l
@j [Fun l [Close

:I'he name of the project and Main class will be different from what I have shown.

2) Press Browse and select the project your class is in. Then press Search and select the
class where you defined your application. In my case the project was LabAssign4 and the
class was Test. After | carried out the above steps, 1 got the following window:

Run Configu

Create, manage, and run configurations

©

Run a Java application

jﬁg“llﬂ}:b' Name: '_abil
type filter text & Main . 0d= Arguments} =i JRE} 0’4} Classpath] 'Ey Source} ﬁ Environmenq E=| Qommon}
& Eclipse Application Project
0 Java Applet
4 [T] Java Application LabAssignd
[Lab4 Main class:
3] Welcome
a Ju JUnit a4 Test
Ju CustomerTest [TlInclude system libraries when searching for a main class
Jti JUnit Plug-in Test []Include inherited mains when searching for a main class
&4 05Gi Framework [Stgp in main

O I = & B . W B W 8 T B0 & 8 W W s

Apply Revert

Filter matched 9 of 9 itemns

@ Run | [Close

3) Now select Arguments (the second tab) giving the following window:

Run Configuratio
Create, manage, and run configurations
Run a Java application @
4 [0 o
|_|L1§|x| = 5 Mame: Labd
type filter text (& Main (9= Arguments . =i JRE} L5 Classpath] Be Source] .-} Environment] =] Qommon}
& Eclipse Application Program argurments:
Java Applet
a 7] Java Application i 1
Lab4 |
Welcome - |
4 Ju Unit "
Ju CustomerTest |
i JUnit Plug-in Test VM arguments: |
4 05Gi Framework " i
L
!
(]
(]
Working directory: i
@ Default: ${workspace_loc:LabAssignd} "
L]
() Other: i
||
Waorkspace... Eile System... Variables...
(
(]
Appl Revert I
Filter matched 9 of 9 itemns ’ BPY] ’ S] i
L]
@ [Bun] [Close] 1
e ——"

4) In the box under Program arguments give your command line arguments one by one,
separated by spaces. Each commend line argument is a string. If a command line
argument contains one or more spaces, put the argument inside a pair of double quotes.

For instance, it is valid to specify the following:
Hello how “are you doing” ‘25 “+ 327

After specifying all command line arguments, press Apply and then press Close.

This means | have specified 5 command line arguments as follows:
“Hello”

“how”

“are you doing”

GG25’3

“t32

Now if you run your application as usual (Run -> Run As 1 Java Application) you get the
following output:

a[@] =Hello

a[1] =how

a[2] =are you doing

a[3] =25

al[4] =+ 32

Note: It is convenient to use this feature to supply a small amount of input data to your
application since you don’t have to specify the input every time you run your program.

