Lab 2 :

Implement an ArrayList class using given design contract.

ArraylList (<T>) : Standard array based implementation of an ArrayList

private : T array ([]) data container
size is the # of elements in this ArrayList
public : constant capacity is the initial capacity of the ArrayList container

ArraylList() : Constructs an ArrayList object so that integer array is empty and size is 0
/*! alters: self and size
*1 ensures: self =<>and size =0

*/

ArrayList(T[] other) : Constructs an ArrayList using specified array other.
/*! alters: self and size

*1 requires: other 1= <>

*1 ensures: self =<#other> and size = other.length

*/

void clear() : resets this ArrayList back to empty
/*! alters: self and size
*1 ensures: self =<>and size =0

*/

boolean equals(ArrayList other) : equals returns true if elements in this ArrayList are equal to
elements in other regardless of their order, and self.size == other.size, otherwise returns false.
/*! preserves: self and other

*1 ensures: self == other

*/

void addFront(T x) : add x to the front of this ArrayList
/*! alters: self and size

*| consumes: X

*| ensures: self =<#x> + <#self> and size++

*/

void addBack(T x) : add x to the back of this ArrayList
/*!1 alters: self and size
*| consumes: X

*| ensures: self = <#self> + <#x> and size++

*/

void removeFront() : remove the first element of this ArrayList
/*! alters: self and size

*1 requires: self 1= <>

*1 ensures: self =<#first> - <#self> and size--

*/

void removeBack() : remove the last element of this ArrayList
/*! alters: self and size

*1 requires: self 1= <>

*| ensures: self = <#self> - <#last> and size--

*/

String toString() : returns the content of this ArrayList as a String, ex: <A, B, C>
/*! preserves: self

*1 requires: self 1= <>

*I ensures: String = “<#self>”

*/

ArraylList subList(fromindex, toindex) : returns another ArrayList which is a portion of this
ArrayList between specified fromindex, inclusive and toindex exclusive.
/*! preserves: self

*1 requires: self = <> and (fromindex >= 0 | | toindex < size) and fromindex < toindex

*1 ensures: another = <#self>[fromindex, toindex) {anotherList containing current values of
self from fromindex to toindex-1} and another.size = |another|

*/

boolean isEmpty(): returns true if this ArrayList contains no elements
/*! preserves: self

*1 requires: self 1= <>

*1 ensures: true if self |= <> otherwise false

*/

Explanation of terms:

<> - empty list

[]-anarray

<#x> - current value of x
<#tself> - current values of self
+ join

- disjoin

++ addition

- - subtraction

|| cardinality

Write a main method to test all the methods in your ArrayList class. You can score extra credit if
you perform thorough tests. You must write pre/post conditions of all methods. Turn in your
Java source programs, and outputs in a PDF document via Assignments/Lab2.

Here is a starter code!

public class ArrayList<T> { //Using Generics
private T[] array;
private int size;
public static final int capacity = 10;

public ArrayList(){
size = 0;

T[] array = (T[])(new Object[capacity]); //Due to use of
Generics

}

public ArrayList (T[] A){
size = A.length;
array = A;

}

public static void main(String[] args) {

ArrayList<Integer> al = new ArrayList<>();

Integer [] ia = { 3, 5, 9, 1};

ArrayList<Integer> other = new ArrayList<>(ia);

System.out.println(al); // requires implementation of
toString method

System.out.println(other); // requires implementation of
toString method

}
}

