

Lab	2	:	

Implement	an	ArrayList	class	using	given	design	contract.		

ArrayList	(<T>)	:	Standard	array	based	implementation	of	an	ArrayList

private	:	T	array	([])	data	container	
																size	is	the	#	of	elements	in	this	ArrayList
public	:		constant	capacity	is	the	initial	capacity	of	the	ArrayList	container

ArrayList()	:	Constructs	an	ArrayList	object	so	that	integer	array	is	empty	and	size	is	0
/*!	alters:	self	and	size
		*!	ensures:	self	=<>	and	size	=	0
*/

ArrayList(T[]	other)	:	Constructs	an	ArrayList	using	specified	array	other.
/*!	alters:	self	and	size
			*!	requires:	other	!=	<>
		*!	ensures:	self	=<#other>	and	size	=	other.length
*/

void	clear()	:	resets	this	ArrayList	back	to	empty
/*!	alters:	self	and	size
		*!	ensures:	self	=<>	and	size	=	0
*/

boolean	equals(ArrayList	other)		:	equals	returns	true	if	elements	in	this	ArrayList		are	equal	to	
elements	in	other	regardless	of	their	order,	and	self.size	==	other.size,	otherwise	returns	false.		
/*!	preserves:	self	and	other
		*!	ensures:	self	==	other
*/

void	addFront(T	x)	:	add	x	to	the	front	of	this	ArrayList
/*!	alters:	self	and	size
		*!	consumes:	x
		*!	ensures:	self	=<#x>	+	<#self>	and	size++	
*/

void	addBack(T	x)	:	add	x	to	the	back	of	this	ArrayList
/*!	alters:	self	and	size
		*!	consumes:	x

		*!	ensures:	self	=	<#self>		+	<#x>	and	size++
*/

void	removeFront()	:		remove	the	first	element	of	this	ArrayList
/*!	alters:	self	and	size
		*!	requires:	self	!=	<>
		*!	ensures:	self	=<#first>	-	<#self>	and	size--
*/

void	removeBack()	:	remove	the	last	element	of	this	ArrayList
/*!	alters:	self	and	size
		*!	requires:	self	!=	<>
		*!	ensures:	self	=	<#self>		-	<#last>	and	size--
*/

String	toString()	:	returns	the	content	of	this	ArrayList	as	a	String,	ex:	<A,	B,	C>
/*!	preserves:	self		
		*!	requires:	self	!=	<>
		*!	ensures:		String	=	“<#self>”	
*/

ArrayList	subList(fromindex,	toindex)	:	returns	another	ArrayList	which	is	a	portion	of	this	
ArrayList	between	specified	fromindex,	inclusive	and	toindex	exclusive.
/*!	preserves:	self		
		*!	requires:	self	!=	<>	and	(fromindex	>=	0	||	toindex	<	size)	and	fromindex	<	toindex		
		*!	ensures:		another	=		<#self>[fromindex,	toindex)	{anotherList	containing	current	values	of	
self	from	fromindex	to	toindex-1}	and	another.size	=	|another|
*/

boolean	isEmpty():	returns	true	if	this	ArrayList	contains	no	elements
/*!	preserves:	self		
		*!	requires:	self	!=	<>
		*!	ensures:		true	if	self	!=	<>	otherwise	false
*/

Explanation		of	terms:
<>	-	empty	list
[]	-	an	array
<#x>	-	current	value	of	x
<#self>	-	current	values	of	self
+		join	
-		disjoin
++	addition
-	-	subtraction	

||		cardinality

Write	a	main	method	to	test	all	the	methods	in	your	ArrayList	class.	You	can	score	extra	credit	if	
you	perform	thorough	tests.	You	must	write	pre/post	conditions	of	all	methods.	Turn	in	your	
Java	source	programs,	and	outputs	in	a	PDF	document	via	Assignments/Lab2.	

Here	is	a	starter	code!
public class ArrayList<T> { //Using Generics
 private T[] array;
 private int size;
 public static final int capacity = 10;

 public ArrayList(){
 size = 0;
 T[] array = (T[])(new Object[capacity]); //Due to use of
Generics
 }
 public ArrayList(T[] A){
 size = A.length;
 array = A;
 }

 public static void main(String[] args) {
 ArrayList<Integer> al = new ArrayList<>();
 Integer [] ia = { 3, 5, 9, 1};
 ArrayList<Integer> other = new ArrayList<>(ia);
 System.out.println(al); // requires implementation of
toString method
 System.out.println(other); // requires implementation of
toString method
 }
}

			

