

Put your *name* and *section number* on your solution and (if more than one sheet) staple. Section 3 of the NP-completeness homework will be due Friday, October 7.

1. Assume your machine has 64 bit words. Assume you can multiply two n -word numbers in time $3n^2$ with a standard algorithm. Assume you can multiply two n -word numbers in time $10n^{\lg 3}$ with a “fancy” algorithm.
 - (a) Approximately, how large does n have to be for the fancy algorithm to be better?
 - (b) How many bits is that?
 - (c) How many decimal digits is that?
2. Assume that we would like to multiply a two-digit number ab with a three-digit number cde . The standard algorithm would do six atomic multiplications. Explain how you can do fewer atomic multiplications by forming the product $(a+b)(c+d+e)$. How many atomic multiplications do you use?
3. Consider an array of size nine with the numbers in the following order 50, 30, 10, 60, 80, 50, 90, 70, 20.
 - (a) Form the heap using the algorithm described in class. Show the heap as a tree. Show the heap as an array. Exactly how many comparisons did heap creation use?
 - (b) Start with the heap created in Part (a). Show the *array* after each element sifts down *after heap creation*. How many comparisons does each sift use? What is the total number of comparisons *after heap creation*?
4. Assume that we start with a random array of size $n = 2^k - 1$ and form a heap.
 - (a) What is the probability that the third largest element will be a child of the root? Justify.
 - (b) What is the probability that the third smallest element will be a parent of a leaf? Justify.