COMP604 Operating Systems
Assignment

Semester 2, 2016

DUE ON: Week 12 Monday, 17 October 2016, 11:59 PM
Assignment Worth: 30% of total marks

NB: This is a team or individual assignment: The assignment is intended to be a team assignment for teams
of two. However, if you feel it inconvenient to do this as a team, you are free to choose to submit an
individually worked assignment. For those who feel a bit “challenged” with programming due to their major's
nature, this is a chance to team up with somebody more comfortable with programming.

NB: Assignments will be accepted up to five (5) days late, but a penalty of 5% per day (or part of a day) late
will be imposed on either the team or the individual depending on the circumstances.

NB: Students are referred to the school’s policy on plagiarism. A confirmed case will incur zero mark to all
the involved students.

1. Assignment Goal

The goal of this assignment is to develop a better understanding of multithreading and
process/thread synchronization using semaphores. You can do this assignment either using Java
(Runnable interface and java.util.concurrent.Semaphore) or C/C++ (Pthreads).

2. Assignment Overview

In Lecture 5 and Lab 5, we have discussed a semaphore-based solution to the producer-consumer
problem using a bounded buffer. In this assignment we will design a programming solution to the
bounded-buffer problem using the producer and consumer processes. The solution presented in
Lecture 5 uses three semaphores: empty and full, which count the number of empty and full
slots in the buffer, and mutex, which is a binary (or mutual exclusion) semaphore that protects the
actual insertion or removal of items in the buffer. For this assignment, standard counting
semaphores will be used for empty and full, and a binary semaphore will be used to represent
mutex. The producer and consumer--running as separate threads--will move items to and from a
buffer that is synchronized with these empty, full, and mutex structures. You can solve this
problem using either Java concurrent API or POSIX Pthreads API.

3. Assignment Tasks

Task 1: The Buffer (or Buffer.java)

Internally, the buffer will consist of a fixed-size array of type buffer_item (which will be defined
using a typedeT). The array of buffer_item objects will be manipulated as a circular queue.
The definition of buffer_item, along with the size of the buffer, can be stored in a Java class file
or C header file such as the following:

/* buffer.h */ // Java: constant.java
typedefT int buffer_item; // Java: omit it in Java or use wrapper class
#define BUFFER _SIZE 5 // Java: public static final int BUFFER_SIZE = 5;

The buffer will be manipulated with two functions, insert_item() and remove_item(), which
are called by the producer and consumer threads, respectively. A skeleton outlining these
functions appears as:

#include <buffer.h> //Java: import

/> the buffer */
buffer_item buffer[BUFFER_SIZE];
int insert_item(buffer_item item) {

/> insert item into buffer
return O if successful, otherwise

return -1 indicating an error condition */

int remove_item(buffer_item *item) {

/™ remove an object from buffer

placing it in item

return O if successful, otherwise

return -1 indicating an error condition */

}

The 1insert_item() and remove_item() functions will synchronize the producer and
consumer using the algorithms outlined in the lecture slides. The buffer will also require an
initialization code section (which is part of the main() function) that initializes the empty, full,
and mutex semaphores.

Task 2: The main()Function (or Main.java)

The main() function will initialize the buffer and create the separate producer and consumer
threads. Once it has created the producer and consumer threads, the main () function will sleep
for a period of time and, upon awakening, will terminate the application. The main () function will
be passed three parameters on the command line:

1. How long to sleep before terminating
2. The number of producer threads
3. The number of consumer threads

A skeleton for this function appears as:

#include <buffer.h>

int main(int argc, char *argv[]) { //Java: public static void
/ main(String[] args)

/™ 1. Get command line arguments argv[l], argv[2], argv[3]*/

/* 2. Initialize buffer */

/™ 3. Create producer threads */

/> 4. Create consumer threads */

/™ 5. Sleep */

/* 6. Exit */

Task 3: Producer and Consumer Threads (or Producer.java and Consumer.java)

The producer thread will alternate between sleeping for a random period of time and inserting a
random integer into the buffer. Random numbers will be produced using the rand()function,
which produces random integers between 0 and RAND_MAX (Java: Math.random()). The

consumer will also sleep for a random period of time and, upon awakening, will attempt to remove
an item from the buffer.

Please print both the process 1d and the integer item produced/consumed as output message.

Hint: In Linux C, we can get thread id using: pthread_sel (). In Java, inside the run()
method, we can get thread id using:
long threadld = Thread.currentThread().getld();

An outline of the producer and consumer threads appears as:

#include <stdlib_h> 1/* required for randQ) */
#include <buffer.h>
#include <unistd.h>
void *producer(void *param) {
buffer_item item;

while (TRUE) {

/> sleep for a random period of time */
sleep(---);
/* generate a random number */
item = rand() ;
if (insert_item(rand))
fprintf('report error condition');
else
printf(producer %lu produced %d\n*,
pthread_self(), rand);

}

void *consumer(void *param) {
buffer_item item;
while (TRUE) {

/* sleep for a random period of time */
sleep (...) ;
if (remove_item(&item))
fprintf('report error condition');
else
printf(consumer %lu consumed %d\n",pthread_self(),
item);
by
}

Task 4: Test Run

Please create a section called “Running result analysis” in a text file readme.txt and include

both the running output and your explanation to the result in this section. Please allow your main
function to run (sleep) for 10 seconds.

1. Run your program using 1 producer, 1 consumer, and buffer size 5. Explain your result.
2. Run your program using 5 producer, 5 consumer, and buffer size 1. Explain your result.

3. Run your program using one producer, 5 consumer, and buffer size 5. Explain your result.
4. Run your program using 5 producer, 5 consumer, and buffer size 10. Explain your result.

Submission Requirements

1. You should ensure that all files used for the assignment sit in a directory called
“assignment”.

2. For Java code, five files need to be in this directory: Main.java, Buffer.java,
Producer.java, Consumber.java, Constants.java. For C code, two files need to
be in this directory: buffer._h, and buffer.c.

3. In addition, a file readme . txt that includes:

a. State if it's a team or individual work. If it's a teamwork, please give the name and
student number of your team members.

b. Alist of all the files in the directory

c. A brief instructions on how to compile and run the program

d. Your answer to “Task 4: Test Run.

For submission, please compress the whole “assignment” directory as assignment.zip and
submit individually using the Assignment link in AUTonline (inside the Assignment area).

For each submitted program file, we require clear comments including student information,
description of the file, and description of each function defined in this file.

Assignments that fail to follow "submission requirements” will NOT be assessed.

Marking Scheme: See next page.

The assignment will be marked out of 100 and will contribute 30% towards assessment of this
course.

NB: If your code cannot pass compilation or has runtime error, you will get zero mark for
the assignment.

Assessment item Marks

0.1: Comment and readme.doc 5

0.2: Quality of code 4

Task 1: Buffer

1.1: Variable Declaration 3

1.2: The insert_item() function 12

1.3: The remove_item() function 12

Task 2: The main() Function

2.1; Get command line arguments 3

2.2: Initialize buffer 5

2.3: Create producer thread(s) 10

2.4: Create consumer thread(s) 10

2.5: sleep and exit code 2

Task 3: Producer and Consumer Threads

3.1: The producer () function 10

3.2: The consumer () function 10

Task 4: Test Run

4.1: Running output and explanation 14

Total 100

Compilation Error Get zero total
mark

Runtime Error Get zero total
mark

