

Consider the twelve functions of n (recall that \lg denotes the binary logarithm):

n	n^5	$n \lg(n)$	$n!$	\sqrt{n}	$\sqrt[3]{n}$
$\lg(n)$	$\lg(n!)$	$\ln(n)$	2^n	$(1.01)^n$	700,000

1. Arrange these functions in non-decreasing order of growth; that is, find an arrangement $f_1 \leq f_2 \leq \dots \leq f_{12}$ of the functions such that $f_1 \in O(f_2)$, $f_2 \in O(f_3)$, \dots , $f_{11} \in O(f_{12})$. For each i , you should write $f_i = f_{i+1}$ if $f_i \in \Theta(f_{i+1})$, and write $f_i < f_{i+1}$ if $f_i \in o(f_{i+1})$ (unlike the pathological example in Question 2, one of the two will always hold). You do not need to argue for your answers.
2. For each function X , roughly approximate how big n must be in order for $X(n)$ to be at least 100,000, and to be at least 10,000,000,000 (10^{10}).