
CS 4375 Introduction to Machine Learning

Fall 2016

Assignment 1: Decision Tree Induction

Part I: Due electronically by Tuesday, September 6, 11:59 p.m.

Part II: Due electronically by Tuesday, September 13, 11:59 p.m.

Note: 1. Your solution to this assignment must be submitted via eLearning.

2. Whenever possible, you should provide brief justifications for your solution.

3. You may work in a group of two or individually.

Part I: Written Problems (25 points)

1. Representing Boolean Functions (10 points)

Give decision trees to represent the following concepts:

(a) (¬A ∨ B) ∧ ¬(C ∧ A). Your decision tree must contain as few nodes as possible.

(b) (A ⊕ B) ∧ C

2. Decision Trees (15 points)

Spam has become an increasingly annoying problem for e-mail users. In this problem we

are interested in using the ID3 decision tree induction algorithm to automatically determine

whether or not an e-mail is a spam based on whether the words “nigeria”, “viagra”, and

“learning” appear in the e-mail. Below are the instances from which our decision tree will

be learned. Note that a word has the value 1 if and only if it is present in the corresponding

e-mail.

No. nigeria viagra learning Class

1 1 0 0 1

2 0 0 1 1

3 0 0 0 0

4 1 1 0 0

5 0 0 0 0

6 1 0 1 1

7 0 1 1 0

8 1 0 0 1

9 0 0 0 0

10 1 0 0 1

Using these descriptions as training instances, show the decision tree created by the ID3

decision tree learning algorithm. Show the information gain calculations that you computed

to create the tree. Be sure to indicate the class value to associate with each leaf of the tree

and the set of instances that are associated with each leaf.

1

Part II: Programming (75 points)

Implement the ID3 decision tree learning algorithm that we discussed in class. To simplify the

implementation, your system only needs to handle binary classification tasks (i.e. each instance

will have a class value of 0 or 1). In addition, you may assume that all attributes are binary-valued

(i.e. the only possible attribute values are 0 and 1) and that there are no missing values in the

training or test data.

Some sample training files (train.dat, train2.dat) and test files (test.dat,

test2.dat) are available from the assignment page of the course website. In these files, only

lines containing non-space characters are relevant. The first relevant line holds the attribute names.

Each following relevant line defines a single example. Each column holds an example’s value for

the attribute named at the head of the column. The last column (labeled “class”) holds the class

label for the examples. In all of the following experiments, you should use this last class attribute

to train the tree and to determine whether a tree classifies an example correctly.

When building a decision tree, if you reach a leaf node but still have examples that belong

to different classes (i.e., the node is not pure), then choose the most frequent class (among the

instances at the leaf node). If you reach a leaf node in the decision tree and have no examples

left or the examples are equally split among multiple classes, then choose the class that is most

frequent in the entire training set. Do not implement pruning.

IMPORTANT:

• You may use C, C++, C#, Python, or Java to implement the ID3 algorithm. If you

want to use other programming languages, please contact your dear TA, Isaac Persing

(persingq@hlt.utdallas.edu), for approval first.

• Your program should be able to handle any binary classification task with any number of

binary-valued attributes. Consequently, both the number and names of the attributes, as well

as the number of training and test instances, should be determined at runtime. In other words,

these values should not be hard-coded in your program.

• Your program should allow only two arguments to be specified in the command line invo-

cation of your program: a training file and a test file. There should be no graphical user

interface (GUI) of any kind. Any program that does not conform to the above specification

will receive no credit.

• Use logarithm base 2 when computing entropy and define 0 log
2
0 to be 0.

• In the input files, only lines containing non-space characters are relevant, as mentioned pre-

viously. In particular, empty lines may appear anywhere in an input file, including the be-

ginning and the end of the file. Care should be taken to skip over these empty lines.

Your Tasks

a. Build a decision tree using the training instances and print to stdout the tree in the same

format as the example tree shown below.

2

wesley = 0 :

| honor = 0 :

| | barclay = 0 : 1

| | barclay = 1 : 0

| honor = 1 :

| | tea = 0 : 0

| | tea = 1 : 1

wesley = 1 : 0

According to this tree, if wesley = 0 and honor = 0 and barclay = 0, then the

class value of the corresponding instance should be 1. In other words, the value appearing

before a colon is an attribute value, and the value appearing after a colon is a class value.

b. Use the learned decision tree to classify the training instances. Print to stdout the

accuracy of the tree. (In this case, the tree has been trained and tested on the same data

set.) The accuracy should be computed as the percentage of examples that were correctly

classified. For example, if 86 of 90 examples are classified correctly, then the accuracy of

the decision tree would be 95.6%. (Note that the accuracy on the training instances will be

100% if and only if the training instances are consistent.)

Accuracy on training set (90 instances): 95.6%

c. Use the learned decision tree to classify the test instances. Print to stdout the accuracy of

the tree. (In this case, the decision tree has been trained and tested on different data sets.)

Accuracy on test set (10 instances): 60.0%

d. Now, we want to investigate how the amount of training data affects the accuracy of the

resulting decision tree. Plot a learning curve (i.e., a graph of the accuracy of your algorithm

on the test set against different training set sizes) by re-training your learning algorithm

using training set sizes of 100, 200, 300, . . ., 800. Briefly comment on the shape of the

curve. Does it exhibit the usual properties of a learning curve? (We suggest that you plot the

graph using Excel, but if you choose to draw the graph by hand, you need to scan it so that

you can submit it online. We will not accept hardcopy submissions.)

Grading Criteria

The programming portion will be graded on both correctness and documentation.

Correctness. 70 points will be based on the correctness of your decision tree program. We will

likely run your program on a new data set to test your code, so we encourage you to do the same!

Documentation. 5 points will be based on the documentation accompanying your source code.

We expect each source file to contain a paragraph or two at the beginning to describe the contents

of that file. The main program should describe the functionality of the program: the type of input it

expects, the type of output it produces, and the function that it performs. The data structures used

in the program must also be clearly described. The code should be modular.

3

Additional Notes

When reporting accuracy, two decimal places are sufficient. When making graphs,

a. remember to label each axis and to provide a title that indicates what the graph is depicting;

b. “zoom in” on the relevant range of values (e.g., if your numbers vary from 80 to 100%, then

show that range instead of 0–100%, which throws away detail);

What to Submit

Your should submit via eLearning (i) your source code, (ii) a README file that contains

clear instructions for compiling and running your program (as well as the platform (Win-

dows/Linux/Solaris) on which you developed your program), and (iii) the learning curve for (d).

Do not turn in any executables generated from your source code. Each group should hand in a sin-

gle copy of the code. The names of all the members of the group should appear in the README

file. Again, you will receive zero credit for your program if (1) we cannot figure out how to com-

pile and run your program from your README file, (2) we cannot find your source code in the

submission directory, or (3) your program takes more or less than two input arguments.

For all of the assignments in this course, if you are not happy with your submission, you can

re-submit as many times as you want before the submission deadline. Submissions in the late

submission period are possible only if you have not submitted anything before the submission

deadline, and unlike in the regular submission period, you can only submit once in the late sub-

mission period.

4

