1. In a MIPS32 program, the instruction at memory address 0x0040_C408 is j end_if which jumps to the
label end_if which is at memory address 0x0041_829C. What would be the encoding of this instruction? Express
your answer as an 8-hexdigit integer. For full credit explain how your answer was obtained.
2. In a MIPS32 program, the instruction at memory address 0x0040_C4D4 is beq $t0, $t1, loop which
jumps to the label loop which is at memory address 0x0040_6478. What would be the encoding of this instruction?
Express your answer as an 8-hexdigit integer. For full credit explain how your answer was obtained.
3. Name your source code file hw04_01.s The integer square root of an integer n, isqrt(n), is defined to
be floor(sqrt(n)) where the floor of n is the largest integer that is less than or equal to n. For example,isqrt(2) = 1
since sqrt(2) is approximately 1.4142 and floor(1.4142) = 1. As another example, consider n = 67531;sqrt(67531) is
approximately 259.867, meaning that isqrt(67531) should be 259 since floor(259.867) is 259. Shown below is the
pseudocode for a fairly efficient algorithm for computing isqt(n),
Function isqrt(Input: n as unsigned int) Returns unsigned int
unsigned int rem ← 0, root ← 0
for i ← 0 to 15 do
root = root leftshift 1
rem = (rem leftshift 2) + (n rightshift 30)
n = n leftshift 2
increment root
if root ≤ rem then
rem = rem - root
increment root
else
decrement root
end if
end for
return root rightshift 1
End Function isqrt
This algorithm will work as long as n is not so large as to cause overflow (I have not determined the maximum value
of n). For this exercise you are to write a complete MIPS assembly language program which: (1) displays a prompt
asking the user to enter an integer n greater than or equal to 0; (2) reads a value from the keyboard into n; (3)
calculates and displays isqrt(n). Here is a sample run, where user input is in bold,
Enter n? 67531
isqrt(67531) = 289
Programming Requirements
1. Your program shall consist of two functions: main() and isqrt(). isqrt() shall be implemented as described above.
main() shall contain the remainder of the code which prompts for n, reads n, calls isqrt() passing n, and displays
the return value from isqrt(n).
2. There shall be no global variables, i.e., the .data section shall only contain definitions for string literals. All
variables used used in main() and isqrt() shall be defined as local variables in each function's stack frame.
3. The MIPS procedure calling convention shall be followed, i.e., arguments to function calls shall be placed in $a
registers, return values from a function shall be placed in $v registers, the caller must save any $t registers that it
does not want overwritten by the callee, and the callee must save and restore any $s registers that it uses.
4. I do not want you to optimize the code in the ways we discussed in the lecture, i.e., by storing the values of
variables in registers rather than allocating room for them in the stack frame and avoiding memory accesses as
much as possible. Rather, I want you to allocate all local variables in the stack frame and read/write the values of
local variables from/to memory whenever that value is need. The primary objective of this exercise is to see if you
know how to call procedures, pass parameters, return values from a procedure, and access local variables, all while
setting up and tearing down a stack frame at the beginning and end of the procedure.
5. Important Note: when shifting left and shifting right, use the SLL and SRL instructions. There is a shift-right
arithmetic instruction SRA, but using it will not produce the correct result, as I learned.
4 Download and complete the source code file hw04_02.s from the course website. In the
C language, strings variables are represented as one-dimensional arrays of 1-byte characters with a null character (the
character with ASCII value zero) at the end. The purpose of the null character is to indicate to functions that
manipulate C-strings where the string ends in memory; note the null character is not part of the string. For example,
consider storing the string "Bart Simpson" in a string variable named name,
char name[] ="Bart Simpson";
A diagram showing how name would be stored in memory is shown to the right. Note that the name of
an array is equivalent to the address of the first element of the array, so name is equivalent to 0x400 (we
say the address of name is 0x400). The string ends at 0x40B; the null character (which is not part of the
string) is at 0x40C. Starting at 0x40D is free memory where another variable could be allocated.
To allocate a locally defined array of characters on the stack, we have to subtract a value from $sp that
is the number of bytes in the array. For example, consider this pseudocode,
-- Returns the char at index n of string.
Function strgetch(Input: string[] as array of char; Input: i as int) Returns Nothing
return string[i]
End Function strgetch
Function main() Returns Nothing
int n; char ch, name[] ← "Bart Simpson"
SysPrintStr("Enter n? ")
n ← SysReadInt()
ch ← strgetch(name, n)
SysPrintChar(ch)
SysExit()
End Function foo
main() allocates three local variables: n which is 4 bytes (1 word), name which is 13 bytes; and ch which is 1 byte. It
is not a leaf procedure because although main calls strgetch(), main() never returns; we exit from main() by calling the
SysExit service call. Read the comments in the function header for main() regarding how main()'s stack frame is
allocated. Note that ch is allocated at $sp+0, name at $sp+1 to $sp+14, and n at $sp+16. The byte at $sp+15 is
wasted memory which is required to ensure that n is word-aligned.
In C when an array is passed as a function argument, what is passed is the address of the array. This is done because
passing the array by-value would require copying all of the elements of the array from one block of memory to another
block of memory. This takes time and wastes memory. Passing the address of an array is faster because the address is
simply a word which can be passed in a register; it also consumes less memory because there is only one version of the
array in memory. The callee can retrieve the address from the register and perform calculations to access the
individual elements of the array
The general formula for accessing the ith element of a one-dimensional array a where each element is of type t is,
&a[i] = &a + i · sizeof(t)
where the sizeof operator returns the number of bytes allocated for a value of type t. For a character array (t = char),
sizeof(char) = 1 byte. If a were an array of integers (t = int), sizeof(int) = 4 bytes in MIPS32.
strgetch() allocates two local variables: string which is 4 bytes (1 word) and contains the address of thename
argument passed from main() and i which is a 4-byte word and contains the value of the n argumentpassed from
main(). strgetch() is a leaf procedure as it does not call any other procedures, so it does not need to save and restore
$ra in the stack frame. Therefore, strgetch()'s stack frame will consist of 8 bytes (2 words).
Within strgetch(), to access string[i] we have to: (1) load string into a register; remember, string is the address of the
name argument from main(); within the stack frame, the value of string will be at $sp+4; (2) load i into a register; i is
at $sp+0 (3) add those two registers to compute &string[i]; and (4) use a lbu (load byte unsigned) to readstring[i] (or
use a sb to write a character to string[i]).
h04_02.s contains the implementation of main() and strgetch(). Your job is to read the comments that describe the
strcpy()—string copy—function and write the assembly language code to implement that function. Documentation on
the C strcpy() function can be found at 1.
When studying the code, you will notice that I made no great effort to optimize ot and neither should you. There is
great benefit to learning how to write highly optimized assembly language code, but in order to learn the basics of
assembly language programming, it is less confusing when you do not attempt to optimize the code.
[bookmark: _GoBack]
